Released under CC BY-NC-ND
Copyright: © 2019 CISA Publisher
Antoniou, N., & Zabaniotou, A. (2013). Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews, 20, 539–558.
DOI 10.1016/j.rser.2012.12.005
Aylón, E., Callén, M. S., López, J. M., Mastral, A. M., Murillo, R., Navarro, M. V., & Stelmach, S. (2005). Assessment of tire devolatilization kinetics. Journal of Analytical and Applied Pyrolysis, 74(1–2), 259–264.
DOI 10.1016/J.JAAP.2004.09.006
Banar, M., Akyildiz, V., Özkan, A., Çokaygil, Z., & Onay, Ö. (2012). Characterization of pyrolytic oil obtained from pyrolysis of TDF (Tire Derived Fuel). Energy Conversion and Management, 62, 22–30.
DOI 10.1016/j.enconman.2012.03.019
Barlaz, M. A., Eleazer, W. E., & Whittle, D. J. (1993). Potential To Use Waste Tires As Supplemental Fuel In Pulp And Paper Mill Boilers, Cement Kilns And In Road Pavement. Waste Management and Research, 11, 463-480.
DOI 10.1006/wmre. 1993.1050
Chen, J. H., Chen, K. S., & Tong, L. Y. (2001). On the pyrolysis kinetics of scrap automotive tires. Journal of Hazardous Materials, 84(1), 43–55.
DOI 10.1016/S0304-3894(01)00180-7
Cheung, K. Y., Lee, K. L., Lam, K. L., Chan, T. Y., Lee, C. W., & Hui, C. W. (2011). Operation strategy for multi-stage pyrolysis. Journal of Analytical and Applied Pyrolysis, 91, 165–182.
DOI 10.1016/j.jaap.2011.02.004
Cheung, K. Y., Lee, K. L., Lam, K. L., Lee, C. W., & Hui, C. W. (2011). Integrated kinetics and heat flow modelling to optimise waste tyre pyrolysis at different heating rates. Fuel Processing Technology, 92(5), 856–863.
DOI 10.1016/j.fuproc.2010.11.028
Conesa, J. ., Font, R., & Marcilla, A. (1997). Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes. Journal of Analytical and Applied Pyrolysis, 43(1), 83–96.
DOI 10.1016/S0165-2370(97)00057-0
Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56–60.
DOI 10.1016/j.tca.2015.10.008
Danon, B., Mkhize, N. M., Van Der Gryp, P., & Görgens, J. F. (2015a). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica Acta, 601, 45–53.
DOI 10.1016/j.tca.2014.12.003
Friedman, H. L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Symposia, 4, 183–195
Giugliano, M. M., Cernuschi, S., Ghezzi, U., Grosso, M., & Giugliano, M. M. (1999). Evaluation of Waste Tires Utilization in Cement Kilns Experimental Evaluation of Waste Tires Utilization in Cement Kilns. Journal of the Air & Waste Management Association Journal of the Air & Waste Management Association J. Air & Waste Manage. Assoc, 4912(49), 1405–1414.
DOI 10.1080/10473289.1999.10463976doi.org/10.1080/10473289.1999.10463976
Kim, Seung; Park, Jae K.; Chun, H.-D. (1995). Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA. Journal of Environmental Engineering, 121(7), 507–514. Retrieved from
DOI 10.1061/(ASCE)0733-9372(1995)121:7(507)
Kissinger, H. E. (1957). Reaction kinetics in differential analysis. Analytical Chemistry, 27, 1702–1706
Lah, B., Klinar, D., & Likozar, B. (2013). Pyrolysis of natural, butadiene, styrene–butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations. Chemical Engineering Science, 87, 1–13.
DOI 10.1016/J.CES.2012.10.003
Lam, K.-L., Lee, C.-W., & Hui, C.-W. (2010). Multi-stage Waste Tyre Pyrolysis: An Optimisation Approach. Chemical Engineering Transactions, 21(21), 853–858.
DOI 10.3303/CET1021143
Leung, D. Y. C., & Wang, C L.. (1999). Kinetic Modeling of Scrap Tire Pyrolysis. Energy and Fuels, 13(2), 421–427.
DOI 10.1021/ef980124l
Lopez, G., Aguado, R., Olazar, M., Arabiourrutia, M., & Bilbao, J. (2009). Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Management, 29(10), 2649–2655.
DOI 10.1016/j.wasman.2009.06.005
Lopez, G., Olazar, M., Amutio, M., Aguado, R., & Bilbao, J. (2009). Influence of tire formulation on the products of continuous pyrolysis in a conical spouted bed reactor. Energy and Fuels, 23(11), 5423–5431.
DOI 10.1021/ef900582k
Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320.
DOI 10.1016/j.jaap.2016.04.019
Mui, E. L. K., Ko, D. C. K., & McKay, G. (2004). Production of active carbons from waste tyres––a review. Carbon, 42(14), 2789–2805.
DOI 10.1016/J.CARBON.2004.06.023
Mui, E. L. K., Lee, V. K. C., Cheung, W. H., & McKay, G. (2008). Kinetic Modeling of Waste Tire Carbonization. Energy and Fuels, 22(3), 1650–1657.
DOI 10.1021/ef700601g
Olazar, M., Aguado, R., Vélez, D., Arabiourrutia, M., & Bilbao, J. (2005). Kinetics of scrap tire pyrolysis in a conical spouted bed reactor. Industrial and Engineering Chemistry Research, 81, 127–132.
DOI 10.1021/ie040259g
Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and Applied Pyrolysis, 95, 1.
DOI 10.1016/j.jaap.2012.01.012
Quek, A., & Balasubramanian, R. (2013). Liquefaction of waste tires by pyrolysis for oil and chemicals - A review. Journal of Analytical and Applied Pyrolysis, 101, 1–16.
DOI 10.1016/j.jaap.2013.02.016
Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and Applied Pyrolysis, 75, 11–18.
DOI 10.1016/j.jaap.2005.03.002
Senneca, O., Salatino, P., & Chirone, R. (1999). A fast heating-rate thermogravimetric study of the pyrolysis of scrap tyres. Fuel, 78(13), 1575–1581.
DOI 10.1016/S0016-2361(99)00087-3
Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32, 1742–1751.
DOI 10.1016/j.wasman.2012.05.010
Williams, P. T. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33, 1714–1728.
DOI 10.1016/j.wasman.2013.05.003
Zabaniotou, A., Madau, P., Oudenne, P. D., Jung, C. G., Delplancke, M. P., & Fontana, A. (2004). Active carbon production from used tire in two-stage procedure: Industrial pyrolysis and bench scale activation with H2O-CO2mixture. Journal of Analytical and Applied Pyrolysis, 72, 289–297.
DOI 10.1016/j.jaap.2004.08.002
Stefano Caro, Matteo Ulivi, Alessandro Ratto and Olli Dahl
Published 20 Nov 2019Maxwell Katambwa Mwelwa, Samuel Ayodele Iwarere and Ntandoyenkosi Malusi Mkhize
Published 20 Nov 2019Kacper Świechowski, Ewa Syguła, Waheed Adewale Rasaq, Alan Gasiński and Jacek Łyczko
Published 20 Nov 2019Title | Support | Price |
---|