an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Kacper Świechowski - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Ewa Syguła - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Waheed Adewale Rasaq - Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Poland
  • Alan Gasiński - Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Poland
  • Jacek Łyczko - Department of Chemistry, Wrocław University of Environmental and Life Sciences, Poland

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Biochars made from brewer’s spent grain were added to the anaerobic digestion of brewer’s spent grain to enhance the methane fermentation process and improve biogas production. In research, the effect of biochars made at 300, 450, and 600 °C and doses of 1-8% added to anaerobic digestion was tested. The biochemical biogas potential tests in mesophilic conditions were performed. The tests took 28 days, the biogas yield for each reactor varied from 500-650 ml×gVS-1, and around 60% substrate degradation was obtained. For each test, the kinetics parameters using the first-order model were determined. The constant biogas production rate (k), and the biogas production rate (r) varied from 0.05-0.08 d−1, and 42-60 ml×(gVS×d)−1 respectively. Though the differences in biogas production turned out to be statistically insignificant (p<0.05) due to the high disappearance in obtained data and conflicting effects, the response surface area analysis showed that biochar made at 450 °C at the share of 1-4% could be used to maximize biogas production. Nevertheless, supplementation with biochar needs to be done carefully since in many cases, a reduction in biogas production was observed


Editorial History

  • Received: 21 Jan 2023
  • Revised: 03 Apr 2023
  • Accepted: 22 May 2023
  • Available online: 15 Jun 2023


Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374–379.
DOI 10.1016/j.biortech.2012.12.165

Ambaye, T. G., Rene, E. R., Nizami, A. S., Dupont, C., Vaccari, M., & van Hullebusch, E. D. (2021). Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 290.
DOI 10.1016/j.jenvman.2021.112537

Amienyo, D., & Azapagic, A. (2016). Life cycle environmental impacts and costs of beer production and consumption in the UK. The International Journal of Life Cycle Assessment, 21(4), 492–509.
DOI 10.1007/s11367-016-1028-6

Arranz, J. I., Sepúlveda, F. J., Montero, I., Romero, P., & Miranda, M. T. (2021). Feasibility analysis of brewers’ spent grain for energy use: Waste and experimental pellets. Applied Sciences, 11(6).
DOI 10.3390/app11062740

Balogun, A. O., Sotoudehniakarani, F., & McDonald, A. G. (2017). Thermo-kinetic, spectroscopic study of brewer’s spent grains and characterisation of their pyrolysis products. Journal of Analytical and Applied Pyrolysis, 127, 8–16.
DOI 10.1016/j.jaap.2017.09.009

Beer market report. (2022). Beer Market Size, Share & COVID-19 Impact Analysis, By Type (Lager,Ale, Stouts, and Others), Packaging (Glass Bottle and Metal Can), Distribution Channel (On-trade and Off-trade), and Regional Forecast, 2021-2028.

Białowiec, A., Micuda, M., Szumny, A., Łyczko, J., & Koziel, J. A. (2018). Quantification of VOC emissions from carbonized refuse-derived fuel using solid-phase microextraction and gas chromatography-mass spectrometry. Molecules, 23(12).
DOI 10.3390/molecules23123208

Borel, L. D. M. S., Reis Filho, A. M., Xavier, T. P., Lira, T. S., & Barrozo, M. A. S. (2020). An investigation on the pyrolysis of the main residue of the brewing industry. Biomass and Bioenergy, 140.
DOI 10.1016/j.biombioe.2020.105698

Bougrier, C., Dognin, D., Laroche, C., & Cacho Rivero, J. A. (2018). Use of trace elements addition for anaerobic digestion of brewer’s spent grains. Journal of Environmental Management, 223, 101–107.
DOI 10.1016/j.jenvman.2018.06.014

Catenacci, A., Boniardi, G., Mainardis, M., Gievers, F., Farru, G., Asunis, F., Malpei, F., Goi, D., Cappai, G., & Canziani, R. (2022). Processes, applications and legislative framework for carbonized anaerobic digestate: Opportunities and bottlenecks. A critical review. Energy Conversion and Management, 263, 115691.
DOI 10.1016/j.enconman.2022.115691

Čater, M., Fanedl, L., Malovrh, Š., & Marinšek Logar, R. (2015). Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource Technology, 186, 261–269.
DOI 10.1016/j.biortech.2015.03.029

Chen, L., Fang, W., Chang, J., Liang, J., Zhang, P., & Zhang, G. (2022). Improvement of direct interspecies electron transfer via adding conductive materials in anaerobic digestion: mechanisms, performances, and challenges. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A.
DOI 10.3389/fmicb.2022.860749

Cheri, C., Crandall, S., del Grande, D., Flores, T., Gilliland, M., Horwitz, L., Opela, C., Swersey, C., & Utz, M. (2014). Energy Usage, GHG Reduction, Effi ciency and Load Management Manual.

Cimini, A., & Moresi, M. (2021). Circular economy in the brewing chain. Italian Journal of Food Science, 33(3), 47–69.
DOI 10.15586/ijfs.v33i3.2123

Conway, J. (2021, October 15). Global beer production by region 2008-2020. Statista.

Conway, J. (2022a, March 16). European beer production volume by country 2020. Statista

Conway, J. (2022b, June 27). Global beer production 1998-2020. Statista.

Conway, J. (2022c, October 15). Global leading countries in beer production 2020. Statista.

Dudek, M., Świechowski, K., Manczarski, P., Koziel, J. A., & Białowiec, A. (2019). The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers’ spent grain. Energies, 12(1518), 1–22.
DOI 10.3390/en12081518

Dyjakon, A., Sobol, Ł., Noszczyk, T., & Mitręga, J. (2022). The Impact of Torrefaction Temperature on the Physical-Chemical Properties of Residual Exotic Fruit (Avocado, Mango, Lychee) Seeds. Energies, 15(2), 612.
DOI 10.3390/en15020612

Fidel, R. B., Laird, D. A., Thompson, M. L., & Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167, 367–373.
DOI 10.1016/j.chemosphere.2016.09.151

Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water, 11(5), 921.
DOI 10.3390/w11050921

Gomes, M. M., Sakamoto, I. K., Silva Rabelo, C. A. B., Silva, E. L., & Varesche, M. B. A. (2021). Statistical optimization of methane production from brewery spent grain: Interaction effects of temperature and substrate concentration. Journal of Environmental Management, 288, 112363.
DOI 10.1016/j.jenvman.2021.112363

Gunes, B., Stokes, J., Davis, P., Connolly, C., & Lawler, J. (2019). Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review. Renewable and Sustainable Energy Reviews, 113, 109281.
DOI 10.1016/j.rser.2019.109281

Hejna, A., Marć, M., Kowalkowska-Zedler, D., Pladzyk, A., & Barczewski, M. (2021). Insights into the thermo-mechanical treatment of brewers’ spent grain as a potential filler for polymer composites. Polymers, 13(6), 879.
DOI 10.3390/polym13060879

Ikram, S., Huang, L., Zhang, H., Wang, J., & Yin, M. (2017). Composition and nutrient value proposition of brewers spent grain. Journal of Food Science, 82(10), 2232–2242.
DOI 10.1111/1750-3841.13794

IR Spectrum Table&Chart. (2022). Merck.

Karlović, A., Jurić, A., Ćorić, N., Habschied, K., Krstanović, V., & Mastanjević, K. (2020). By-products in the malting and brewing industries—re-usage possibilities. Fermentation, 6(3), 82.
DOI 10.3390/fermentation6030082

Khanal, S. Kumar. (2008). Anaerobic biotechnology for bioenergy production principles and applications (1st ed.). Wiley-Blackwell

Li, Y., Qi, Q., & Li, J. (2011). Energy use project and conversion efficiency analysis on biogas produced in breweries. Industrial Energy Efficiency, 1489–1496.
DOI 10.3384/ecp110571489

Łyczko, J., Koziel, J. A., Banik, C., & Białowiec, A. (2021). The proof-of-concept: The transformation of naphthalene and its derivatives into decalin and its derivatives during thermochemical processing of sewage sludge. Energies, 14(20).
DOI 10.3390/en14206479

Mainardis, M., Flaibani, S., Mazzolini, F., Peressotti, A., & Goi, D. (2019). Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. Journal of Environmental Chemical Engineering, 7(3), 103184.
DOI 10.1016/j.jece.2019.103184

Masebinu, S. O., Fanoro, O. T., Insam, H., Mbohwa, C., Wagner, A. O., Markt, R., & Hupfauf, S. (2021). Can the addition of biochar improve the performance of biogas digesters operated at 45°C? Environmental Engineering Research, 27(2), 200648–0.
DOI 10.4491/eer.2020.648

Miller, K. E., Herman, T., Philipinanto, D. A., & Davis, S. C. (2021). Anaerobic digestion of food waste, brewery waste, and agricultural residues in an off-grid continuous reactor. Sustainability, 13(12).
DOI 10.3390/su13126509

Morales, V. L., Pérez-Reche, F. J., Hapca, S. M., Hanley, K. L., Lehmann, J., & Zhang, W. (2015). Reverse engineering of biochar. Bioresource Technology, 183, 163–174.
DOI 10.1016/j.biortech.2015.02.043

Naibaho, J., Korzeniowska, M., Wojdyło, A., Figiel, A., Yang, B., Laaksonen, O., Foste, M., Vilu, R., & Viiard, E. (2021). Fiber modification of brewers’ spent grain by autoclave treatment to improve its properties as a functional food ingredient. LWT, 149, 111877.
DOI 10.1016/j.lwt.2021.111877

Nasir, N. A., Yakub, I., Razali, N. A., & Rosid, S. J. M. (2021). Hydrothermal liquefaction of an industrial biomass waste: Brewer’s Spent Grain (BSG). Nano Hybrids and Composites, 31, 65–72.
DOI 10.4028/

Ngo, T., Khudur, L. S., Hakeem, I. G., Shah, K., Surapaneni, A., & Ball, A. S. (2022). Wood biochar enhances the valorisation of the anaerobic digestion of chicken manure. Clean Technologies, 4(2), 420–439.
DOI 10.3390/cleantechnol4020026

Nwokolo, N., Mukumba, P., Obileke, K., & Enebe, M. (2020). Waste to energy: A focus on the impact of substrate type in biogas production. Processes, 8(10), 1224.
DOI 10.3390/pr8101224

OGL. (2021). Combined heat and power-technologies A detailed guide for CHP developers-Part 2.

Olajire, A. A. (2020). The brewing industry and environmental challenges. Journal of Cleaner Production, 256, 102817.
DOI 10.1016/j.jclepro.2012.03.003

Oliveira, J. v., Alves, M. M., & Costa, J. C. (2018). Biochemical methane potential of brewery by-products. Clean Technologies and Environmental Policy, 20(2), 435–440.
DOI 10.1007/s10098-017-1482-2

PKN ISO/TS 12902 : 2007 Solid mineral fuel - determination of total carbon, hydrogen and nitorgen - instrumental methods. (n.d.)

PN-EN 14346:2011 Standard. Waste characteristics. Calculation of dry mass on the basis of dry residue or water content. (n.d.)

PN-EN 15169:2011 Standard. Waste characteristics. Determination of organic matter content for waste, slurry and sludge. (n.d.)

Poulsen, T. G., Adelard, L., & Wells, M. (2017). Improvement in CH4 /CO2 ratio and CH4 yield as related to biomass mix composition during anaerobic co-digestion. Waste Management, 61, 179–187.
DOI 10.1016/j.wasman.2016.11.009

Sanna, A., Li, S., Linforth, R., Smart, K. A., & Andrésen, J. M. (2011). Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina. Bioresource Technology, 102(22), 10695–10703.
DOI 10.1016/j.biortech.2011.08.092

Sežun, M., Grilc, V., Zupančič, G. D., & Logar, R. M. (2011). Anaerobic digestion of brewery spent grain in a semi-continuous bioreactor: inhibition by phenolic degradation products. Acta Chim Slov, 58(1), 158–166.

Shi, R., Hong, Z., Li, J., Jiang, J., Baquy, M. A.-A., Xu, R., & Qian, W. (2017). Mechanisms for Increasing the pH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. Journal of Agricultural and Food Chemistry, 65(37), 8111–8119.
DOI 10.1021/acs.jafc.7b02266

Shin, D. C., Kim, I.-T., Jung, J., Jeong, Y., Lee, Y.-E., & Ahn, K.-H. (2022). Increasing Anaerobic Digestion Efficiency Using Food-Waste-Based Biochar. Fermentation, 8(6), 282.
DOI 10.3390/fermentation8060282

Shin, R., & Searcy, C. (2018). Evaluating the greenhouse gas emissions in the craft beer industry: An assessment of challenges and benefits of greenhouse gas accounting. Sustainability, 10(11), 4191.
DOI 10.3390/su10114191

Sieradzka, M., Kirczuk, C., Kalemba-Rec, I., Mlonka-Mędrala, A., & Magdziarz, A. (2022). Pyrolysis of biomass wastes into carbon materials. Energies, 15(5), 1941.
DOI 10.3390/en15051941

Sobol, Ł., Dyjakon, A., Suardi, A., & Preißmann, R. (2021). Analysis of the possibility of energetic utilization of biomass obtained from grass mowing of a large‐area golf course—a case study of tuscany. Energies, 14(17).
DOI 10.3390/en14175520

Stachowiak-Wencek, A., Bocianowski, J., Waliszewska, H., Borysiak, S., Waliszewska, B., & Zborowska, M. (2021). Statistical prediction of biogas and methane yields during anaerobic digestion based on the composition of lignocellulosic biomass. BioResources, 16(4), 7086–7100

Świechowski, K., Hnat, M., Stępień, P., Stegenta-Dąbrowska, S., Kugler, S., Koziel, J. A., & Białowiec, A. (2020). Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance. Energies, 13(12), 3161.
DOI 10.3390/en13123161

Świechowski, K., Matyjewicz, B., Telega, P., & Białowiec, A. (2022). The influence o low-temperature food waste biochars on anaerobic digestion of food waste. Materials, 15(3).
DOI 10.3390/ma15030945

Syguła, E., Gałęzowska, M., & Białowiec, A. (2022). Enhanced production of biogas using biochar–sulfur composite in the methane fermentation process. Materials, 15(13), 4517.
DOI 10.3390/ma15134517

Torquato, L. D. M., Crnkovic, P. M., Ribeiro, C. A., & Crespi, M. S. (2017). New approach for proximate analysis by thermogravimetry using CO2 atmosphere: Validation and application to different biomasses. Journal of Thermal Analysis and Calorimetry, 128(1).
DOI 10.1007/s10973-016-5882-z

Wambugu, C. W., Rene, E. R., van de Vossenberg, J., Dupont, C., & van Hullebusch, E. D. (2019). Role of Biochar in Anaerobic Digestion Based Biorefinery for Food Waste. Frontiers in Energy Research, 7.
DOI 10.3389/fenrg.2019.00014

Wang, D., Ai, J., Shen, F., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y., & Song, C. (2017). Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost. Bioresource Technology, 227, 286–296.
DOI 10.1016/j.biortech.2016.12.060

Wang, S., Shi, F., Li, P., Yang, F., Pei, Z., Yu, Q., Zuo, X., & Liu, J. (2022). Effects of rice straw biochar on methanogenic bacteria and metabolic function in anaerobic digestion. Scientific Reports, 12(1), 6971.
DOI 10.1038/s41598-022-10682-2

Xi, X., Yan, J., Quan, G., & Cui, L. (2014). Removal of the pesticide pymetrozine from aqueous solution by biochar produced from Brewer’s spent grain at different pyrolytic temperatures. BioResources, 9(4), 7696–7709.
DOI 10.15376/biores.9.4.7696-7709

Zborowska, M., Waliszewska, H., Waliszewska, B., Borysiak, S., Brozdowski, J., & Stachowiak-Wencek, A. (2022). Conversion of carbohydrates in lignocellulosic biomass after chemical pretreatment. Energies, 15(1).
DOI 10.3390/en15010254

Zhang, M., Li, J., Wang, Y., & Yang, C. (2019). Impacts of different biochar types on the anaerobic digestion of sewage sludge. RSC Advances, 9(72), 42375–42386.
DOI 10.1039/C9RA08700A

Zhao, W., Yang, H., He, S., Zhao, Q., & Wei, L. (2021). A review of biochar in anaerobic digestion to improve biogas production: Performances, mechanisms and economic assessments. Bioresource Technology, 341, 125797.
DOI 10.1016/j.biortech.2021.125797

Zhao, Z., Li, Y., Zhang, Y., & Lovley, D. R. (2020). Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. IScience, 23(12), 101794.
DOI 10.1016/j.isci.2020.101794