Released under All rights reserved
Copyright: © 2023 CISA Publisher
Ali, S.S., Sun, J., 2019. Effective thermal pretreatment of water hyacinth (Eichhornia crassipes) for the enhancement of biomethanation: VIT ® gene probe technology for microbial community analysis with special reference to methanogenic Archaea. J. Environ. Chem. Eng. 7.
DOI 10.1016/j.jece.2018.102853
Alrawashdeh, K.A.b.; Gul, E.; Yang, Q.; Yang, H.; Bartocci, P.; Fantozzi, F., 2020. processes E ff ect of Heavy Metals in the Performance of. Process. Artic. 8, 1146
American Public Health Association. Andrew D., American Water Works Association., Water Environment Federation., E., 2005. Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.C
Barua, V.B., Kalamdhad, A.S., 2019. Biogas production from water hyacinth in a novel anaerobic digester: A continuous study. Process Saf. Environ. Prot. 127, 82–89.
DOI 10.1016/j.psep.2019.05.007
Barua, V.B., Kalamdhad, A.S., 2017. Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: A comparative study. J. Clean. Prod. 166, 273–284.
DOI 10.1016/j.jclepro.2017.07.231
Begum, S., Anupoju, G.R., Eshtiaghi, N., 2021. Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios. Biochem. Eng. J. 166, 107853.
DOI 10.1016/j.bej.2020.107853
Begum, S., Golluri, K., Anupoju, G.R., Ahuja, S., Gandu, B., Kuruti, K., Maddala, R.K., Yerramsetti Venkata, S., 2016. Cooked and uncooked food waste: A viable feedstock for generation of value added products through biorefinery approach. Chem. Eng. Res. Des. 107, 43–51.
DOI 10.1016/j.cherd.2015.10.032
Begum, S., Juntupally, S., Anupoju, G.R., Eshtiaghi, N., 2020. Comparison of mesophilic and thermophilic methane production potential of acids rich and high-strength landfill leachate at different initial organic loadings and food to inoculum ratios. Sci. Total Environ. 715, 136658.
DOI 10.1016/j.scitotenv.2020.136658
Bertranda, R.L., 2019. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 201.
DOI 10.1128/JB.00697-18
Bhui, I., Mathew, A.K., Chaudhury, S., Balachandran, S., 2018. Influence of volatile fatty acids in different inoculum to substrate ratio and enhancement of biogas production using water hyacinth and salvinia. Bioresour. Technol. 270, 409–415.
DOI 10.1016/j.biortech.2018.09.055
Bote, M.A., Naik, V.R., Jagdeeshgouda, K.B., 2020. Production of biogas with aquatic weed water hyacinth and development of briquette making machine. Mater. Sci. Energy Technol. 3, 64–71.
DOI 10.1016/j.mset.2019.09.001
Castro, Y.A., Agblevor, F.A., 2020. Interaction effect of high feed to inoculum ratio (F/I) and temperature on the biomethanation kinetics of water hyacinth. SN Appl. Sci. 2, 1–9.
DOI 10.1007/s42452-020-03626-w
FCO, 1985. Biofertilizers and Organic Fertilizers in Fertilizer (Control) Order
Ganesh, P.S., Ramasamy, E. V., Gajalakshmi, S., Abbasi, S.A., 2005. Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem. Eng. J. 27, 17–23.
DOI 10.1016/j.bej.2005.06.010
Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F.Y., Mao, C., Liu, P., Li, X., 2019. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manage. 240, 266–272.
DOI 10.1016/j.jenvman.2019.03.104
Hamer, G., Hedén, C. ‐G, Carenberg, C. ‐O, 1967. Methane as a carbon substrate for the production of microbial cells. Biotechnol. Bioeng. 9, 499–514.
DOI 10.1002/bit.260090406
Ilo, O.P., Simatele, M.D., Nkomo, S.L., Mkhize, N.M., Prabhu, N.G., 2020. The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review. Sustain.
DOI 10.3390/su12219222
Islam, M.N., Rahman, F., Papri, S.A., Faruk, M.O., Das, A.K., Adhikary, N., Debrot, A.O., Ahsan, M.N., 2021. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. J. Environ. Manage. 294, 113036.
DOI 10.1016/j.jenvman.2021.113036
Junior, E.S.O., Tang, Y., Berg, S.J.P. Van Den, Lamers, L.P.M., n.d. Rooting and plant coverage determine greenhouse gas budget of water hyacinth ( Eichhornia crassipes ) 1–29
Kapra Lake [WWW Document], n.d. . Wikipedia
Koyama, M., Yamamoto, S., Ishikawa, K., Ban, S., Toda, T., 2015. Enhancing anaerobic digestibility of lignin-rich submerged macrophyte using thermochemical pre-treatment. Biochem. Eng. J. 99, 124–130.
DOI 10.1016/j.bej.2015.03.013
Krakat, N., Anjum, R., Dietz, D., Demirel, B., 2017. Methods of ammonia removal in anaerobic digestion: A review. Water Sci. Technol. 76, 1925–1938.
DOI 10.2166/wst.2017.406
Kuruti, K., Begum, S., Ahuja, S., Anupoju, G.R., Juntupally, S., Gandu, B., Ahuja, D.K., 2017. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield. Bioresour. Technol. 226, 65–72.
DOI 10.1016/j.biortech.2016.12.005
Lahon, D., Sahariah, D., Debnath, J., Nath, N., Meraj, G., Farooq, M., Kanga, S., Singh, S.K., Chand, K., 2023. Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam, India. PeerJ 11.
DOI 10.7717/peerj.14811
Li, F., He, X., Srishti, A., Song, S., Tan, H.T.W., Sweeney, D.J., Ghosh, S., Wang, C.H., 2021. Water hyacinth for energy and environmental applications: A review. Bioresour. Technol. 327, 124809.
DOI 10.1016/j.biortech.2021.124809
Mathew, A.K., Bhui, I., Banerjee, S.N., Goswami, R., Chakraborty, A.K., Shome, A., Balachandran, S., Chaudhury, S., 2015. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Policy 17, 1681–1688.
DOI 10.1007/s10098-014-0877-6
Nugraha, W.D., Syafrudin, Pradita, L.L., Matin, H.H.A., Budiyono, 2018. Biogas Production from Water Hyacinth (Eichhornia Crassipes): The Effect of F/M Ratio, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12019.
DOI 10.1088/1755-1315/150/1/012019
O’Sullivan, C., Rounsefell, B., Grinham, A., Clarke, W., Udy, J., 2010. Anaerobic digestion of harvested aquatic weeds: Water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecol. Eng. 36, 1459–1468.
DOI 10.1016/j.ecoleng.2010.06.027
Pachaiyappan, S., Elamvazhuthi, P., Dhamodharan, M., Sundaram, S., 2014. Biogas production from water hyacinth blended with cow dung. Indian J. Energy 3, 134–139
Patil, J.H., AntonyRaj, M.A.L., Shankar, B.B., Shetty, M.K., Pradeep Kumar, B.P., 2014. Anaerobic co-digestion of Water Hyacinth and Sheep Waste. Energy Procedia 52, 572–578.
DOI 10.1016/j.egypro.2014.07.112
Paulo, R.N. da S., Vieira, A.V.G., Rodrigues, P., 2021. Evaluation of Biogas Production through Anaerobic Digestion of Aquatic Macrophytes in a Brazilian Reservoir. J. Energy Res. Rev. 7, 1–14.
DOI 10.9734/jenrr/2021/v7i130180
Pellera, F.M., Gidarakos, E., 2018. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 71, 689–703.
DOI 10.1016/j.wasman.2017.04.038
Raposo, S., Pardão, J.M., Díaz, I., Lima-costa, M.E., 2009. Kinetic modelling of bioethanol production using agro-industrial by-products. Int. J. Energy Environ. 3, 1–8
Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., Beck, L., 2023. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 13, 1–30.
DOI 10.3390/agronomy13061521
Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S., 2015. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renew. Sustain. Energy Rev. 41, 943–954.
DOI 10.1016/j.rser.2014.09.006
Sanmuga Priya, E., Senthamil Selvan, P., 2017. Water hyacinth (Eichhornia crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arab. J. Chem. 10, S3548–S3558.
DOI 10.1016/j.arabjc.2014.03.002
Simbayi, T.M., Rashama, C., Awosusi, A.A., Nkuna, R., Christian, R., Matambo, T.S., 2023. Investigating the Anaerobic Digestion of Water Hyacinth (Eichhornia crassipes) Sourced from Hartbeespoort Dam in South Africa. Fermentation 9, 1–13.
DOI 10.3390/fermentation9070685
Smirnova, S. V., Ilin, D. V., Pletnev, I. V., 2021. Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta 221, 121485.
DOI 10.1016/j.talanta.2020.121485
Unpaprom, Y., Pimpimol, T., Whangchai, K., Ramaraj, R., 2021. Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Convers. Biorefinery 11, 849–860.
DOI 10.1007/s13399-020-00850-7
Vidya, S., Girish, L., 2014. Water Hyacinth as a Green Manure for Organic Farming. Int. J. Res. Applied, Nat. Soc. Sci. 2, 65–72
Wembe, D.B., Djomi, R., Konai, N., Nkadeu, G., Ntamack, G.E., 2023. Experimental study of biogas production from water hyacinth. Sci. Technol. Energy Transit. 78, 447–464.
DOI 10.2516/stet/2023010
Patricia Battais, Francis Bonthoux, Sullivan Lechêne, Jennifer Klingler, Jérôme Grosjean, Nathalie Monta and Juliette Kunz-Iffli
Published 29 May 2024Panagiotis Basinas, Kateřina Chamrádová, Olga Vosnaki and Jiří Rusín
Published 29 May 2024Filippo Marchelli, Roberta Ferrentino, Giulia Ischia, Marco Calvi, Gianni Andreottola and Luca Fiori
Published 29 May 2024Title | Support | Price |
---|