an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Kiranmani Janga - Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology CSIR, India
  • Begum Sameena - Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology CSIR, India
  • Gangagni Rao Anupoju - Department of Energy and Environmental Engineering, Indian Institute of Chemical Technology CSIR, India

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Water hyacinth is capable of inexplicably conceal an entire water body within two weeks by forming thick mats due to its rapid proliferation intimidating the existence of aquatic organisms. Therefore, this study is aimed to investigate the conversion of WH to biogas, biomanure and soil conditioner (SC) through anaerobic digestion (AD) and composting process. While composting was studied at the lab and pilot scale using leaves and roots, the AD of WH at various food to inoculum (F/I) ratios of 1, 2, and 5 was carried out with leaves, roots, and a mixture of leaves and roots. The study found that leaves can efficiently produce biogas at a 2:1 F/I ratio with 350 mL/g VS reduced methane and 63% CH4. The qualitative evaluation of biomanure and SC from AD and composting processes revealed that the SC produced from leaves is suitable for agriculture farming (Fenugreek and Coriandrum Sativum) while that of roots for horticulture (Hibiscus and Papaya). About 1200 tons of WH was converted to 120 tons of soil conditioner to control the WH growth in Kapra Lake in Hyderabad city.


Editorial History

  • Received: 29 Dec 2023
  • Revised: 14 Mar 2024
  • Accepted: 02 Apr 2024
  • Available online: 29 May 2024


Ali, S.S., Sun, J., 2019. Effective thermal pretreatment of water hyacinth (Eichhornia crassipes) for the enhancement of biomethanation: VIT ® gene probe technology for microbial community analysis with special reference to methanogenic Archaea. J. Environ. Chem. Eng. 7.
DOI 10.1016/j.jece.2018.102853

Alrawashdeh, K.A.b.; Gul, E.; Yang, Q.; Yang, H.; Bartocci, P.; Fantozzi, F., 2020. processes E ff ect of Heavy Metals in the Performance of. Process. Artic. 8, 1146

American Public Health Association. Andrew D., American Water Works Association., Water Environment Federation., E., 2005. Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.C

Barua, V.B., Kalamdhad, A.S., 2019. Biogas production from water hyacinth in a novel anaerobic digester: A continuous study. Process Saf. Environ. Prot. 127, 82–89.
DOI 10.1016/j.psep.2019.05.007

Barua, V.B., Kalamdhad, A.S., 2017. Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: A comparative study. J. Clean. Prod. 166, 273–284.
DOI 10.1016/j.jclepro.2017.07.231

Begum, S., Anupoju, G.R., Eshtiaghi, N., 2021. Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios. Biochem. Eng. J. 166, 107853.
DOI 10.1016/j.bej.2020.107853

Begum, S., Golluri, K., Anupoju, G.R., Ahuja, S., Gandu, B., Kuruti, K., Maddala, R.K., Yerramsetti Venkata, S., 2016. Cooked and uncooked food waste: A viable feedstock for generation of value added products through biorefinery approach. Chem. Eng. Res. Des. 107, 43–51.
DOI 10.1016/j.cherd.2015.10.032

Begum, S., Juntupally, S., Anupoju, G.R., Eshtiaghi, N., 2020. Comparison of mesophilic and thermophilic methane production potential of acids rich and high-strength landfill leachate at different initial organic loadings and food to inoculum ratios. Sci. Total Environ. 715, 136658.
DOI 10.1016/j.scitotenv.2020.136658

Bertranda, R.L., 2019. Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. J. Bacteriol. 201.
DOI 10.1128/JB.00697-18

Bhui, I., Mathew, A.K., Chaudhury, S., Balachandran, S., 2018. Influence of volatile fatty acids in different inoculum to substrate ratio and enhancement of biogas production using water hyacinth and salvinia. Bioresour. Technol. 270, 409–415.
DOI 10.1016/j.biortech.2018.09.055

Bote, M.A., Naik, V.R., Jagdeeshgouda, K.B., 2020. Production of biogas with aquatic weed water hyacinth and development of briquette making machine. Mater. Sci. Energy Technol. 3, 64–71.
DOI 10.1016/j.mset.2019.09.001

Castro, Y.A., Agblevor, F.A., 2020. Interaction effect of high feed to inoculum ratio (F/I) and temperature on the biomethanation kinetics of water hyacinth. SN Appl. Sci. 2, 1–9.
DOI 10.1007/s42452-020-03626-w

FCO, 1985. Biofertilizers and Organic Fertilizers in Fertilizer (Control) Order

Ganesh, P.S., Ramasamy, E. V., Gajalakshmi, S., Abbasi, S.A., 2005. Extraction of volatile fatty acids (VFAs) from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyacinth as vermicompost. Biochem. Eng. J. 27, 17–23.
DOI 10.1016/j.bej.2005.06.010

Guo, Q., Majeed, S., Xu, R., Zhang, K., Kakade, A., Khan, A., Hafeez, F.Y., Mao, C., Liu, P., Li, X., 2019. Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J. Environ. Manage. 240, 266–272.
DOI 10.1016/j.jenvman.2019.03.104

Hamer, G., Hedén, C. ‐G, Carenberg, C. ‐O, 1967. Methane as a carbon substrate for the production of microbial cells. Biotechnol. Bioeng. 9, 499–514.
DOI 10.1002/bit.260090406

Ilo, O.P., Simatele, M.D., Nkomo, S.L., Mkhize, N.M., Prabhu, N.G., 2020. The benefits of water hyacinth (Eichhornia crassipes) for Southern Africa: A review. Sustain.
DOI 10.3390/su12219222

Islam, M.N., Rahman, F., Papri, S.A., Faruk, M.O., Das, A.K., Adhikary, N., Debrot, A.O., Ahsan, M.N., 2021. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. J. Environ. Manage. 294, 113036.
DOI 10.1016/j.jenvman.2021.113036

Junior, E.S.O., Tang, Y., Berg, S.J.P. Van Den, Lamers, L.P.M., n.d. Rooting and plant coverage determine greenhouse gas budget of water hyacinth ( Eichhornia crassipes ) 1–29

Kapra Lake [WWW Document], n.d. . Wikipedia

Koyama, M., Yamamoto, S., Ishikawa, K., Ban, S., Toda, T., 2015. Enhancing anaerobic digestibility of lignin-rich submerged macrophyte using thermochemical pre-treatment. Biochem. Eng. J. 99, 124–130.
DOI 10.1016/j.bej.2015.03.013

Krakat, N., Anjum, R., Dietz, D., Demirel, B., 2017. Methods of ammonia removal in anaerobic digestion: A review. Water Sci. Technol. 76, 1925–1938.
DOI 10.2166/wst.2017.406

Kuruti, K., Begum, S., Ahuja, S., Anupoju, G.R., Juntupally, S., Gandu, B., Ahuja, D.K., 2017. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield. Bioresour. Technol. 226, 65–72.
DOI 10.1016/j.biortech.2016.12.005

Lahon, D., Sahariah, D., Debnath, J., Nath, N., Meraj, G., Farooq, M., Kanga, S., Singh, S.K., Chand, K., 2023. Growth of water hyacinth biomass and its impact on the floristic composition of aquatic plants in a wetland ecosystem of the Brahmaputra floodplain of Assam, India. PeerJ 11.
DOI 10.7717/peerj.14811

Li, F., He, X., Srishti, A., Song, S., Tan, H.T.W., Sweeney, D.J., Ghosh, S., Wang, C.H., 2021. Water hyacinth for energy and environmental applications: A review. Bioresour. Technol. 327, 124809.
DOI 10.1016/j.biortech.2021.124809

Mathew, A.K., Bhui, I., Banerjee, S.N., Goswami, R., Chakraborty, A.K., Shome, A., Balachandran, S., Chaudhury, S., 2015. Biogas production from locally available aquatic weeds of Santiniketan through anaerobic digestion. Clean Technol. Environ. Policy 17, 1681–1688.
DOI 10.1007/s10098-014-0877-6

Nugraha, W.D., Syafrudin, Pradita, L.L., Matin, H.H.A., Budiyono, 2018. Biogas Production from Water Hyacinth (Eichhornia Crassipes): The Effect of F/M Ratio, in: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p. 12019.
DOI 10.1088/1755-1315/150/1/012019

O’Sullivan, C., Rounsefell, B., Grinham, A., Clarke, W., Udy, J., 2010. Anaerobic digestion of harvested aquatic weeds: Water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecol. Eng. 36, 1459–1468.
DOI 10.1016/j.ecoleng.2010.06.027

Pachaiyappan, S., Elamvazhuthi, P., Dhamodharan, M., Sundaram, S., 2014. Biogas production from water hyacinth blended with cow dung. Indian J. Energy 3, 134–139

Patil, J.H., AntonyRaj, M.A.L., Shankar, B.B., Shetty, M.K., Pradeep Kumar, B.P., 2014. Anaerobic co-digestion of Water Hyacinth and Sheep Waste. Energy Procedia 52, 572–578.
DOI 10.1016/j.egypro.2014.07.112

Paulo, R.N. da S., Vieira, A.V.G., Rodrigues, P., 2021. Evaluation of Biogas Production through Anaerobic Digestion of Aquatic Macrophytes in a Brazilian Reservoir. J. Energy Res. Rev. 7, 1–14.
DOI 10.9734/jenrr/2021/v7i130180

Pellera, F.M., Gidarakos, E., 2018. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 71, 689–703.
DOI 10.1016/j.wasman.2017.04.038

Raposo, S., Pardão, J.M., Díaz, I., Lima-costa, M.E., 2009. Kinetic modelling of bioethanol production using agro-industrial by-products. Int. J. Energy Environ. 3, 1–8

Rashid, A., Schutte, B.J., Ulery, A., Deyholos, M.K., Sanogo, S., Lehnhoff, E.A., Beck, L., 2023. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 13, 1–30.
DOI 10.3390/agronomy13061521

Rezania, S., Ponraj, M., Din, M.F.M., Songip, A.R., Sairan, F.M., Chelliapan, S., 2015. The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview. Renew. Sustain. Energy Rev. 41, 943–954.
DOI 10.1016/j.rser.2014.09.006

Sanmuga Priya, E., Senthamil Selvan, P., 2017. Water hyacinth (Eichhornia crassipes) – An efficient and economic adsorbent for textile effluent treatment – A review. Arab. J. Chem. 10, S3548–S3558.
DOI 10.1016/j.arabjc.2014.03.002

Simbayi, T.M., Rashama, C., Awosusi, A.A., Nkuna, R., Christian, R., Matambo, T.S., 2023. Investigating the Anaerobic Digestion of Water Hyacinth (Eichhornia crassipes) Sourced from Hartbeespoort Dam in South Africa. Fermentation 9, 1–13.
DOI 10.3390/fermentation9070685

Smirnova, S. V., Ilin, D. V., Pletnev, I. V., 2021. Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta 221, 121485.
DOI 10.1016/j.talanta.2020.121485

Unpaprom, Y., Pimpimol, T., Whangchai, K., Ramaraj, R., 2021. Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Convers. Biorefinery 11, 849–860.
DOI 10.1007/s13399-020-00850-7

Vidya, S., Girish, L., 2014. Water Hyacinth as a Green Manure for Organic Farming. Int. J. Res. Applied, Nat. Soc. Sci. 2, 65–72

Wembe, D.B., Djomi, R., Konai, N., Nkadeu, G., Ntamack, G.E., 2023. Experimental study of biogas production from water hyacinth. Sci. Technol. Energy Transit. 78, 447–464.
DOI 10.2516/stet/2023010