Released under All rights reserved
Copyright: © 2023 CISA Publisher
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544.
DOI 10.1016/j.biortech.2012.05.042
Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A., 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374-379.
DOI 10.1016/j.biortech.2012.12.165
Basinas, P., Rusín, J., Chamrádová, K., 2021. Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environ. Res. 192, 110202.
DOI 10.1016/j.envres.2020.110202
Basinas, P., Rusín, J., Chamrádová, K., Kaldis, S.P., 2023. Pyrolysis of the anaerobic digestion solid by-product: Characterization of digestate decomposition and screening of the biochar use as soil amendment and as additive in anaerobic digestion. Energy Convers. Manag. 277, 116658.
DOI 10.1016/j.enconman.2023.116658
Basinas, P., Rusín, J., Chamrádová, K., Malachová, K., Rybková, Z., Novotný, Č., 2022. Fungal pretreatment parameters for improving methane generation from anaerobic digestion of corn silage. Bioresour. Technol. 345, 126526.
DOI 10.1016/j.biortech.2021.126526
Cao, Q., An, T., Xie, J., Liu, Y., Xing, L., Ling, X., Chen, C., 2022. Insight to the physiochemical properties and DOM of biochar under different pyrolysis temperature and modification conditions. J. Anal. Appl. Pyrol. 166, 105590.
DOI 10.1016/j.jaap.2022.105590
Catenacci, A., Boniardi, G., Mainardis, M., Gievers, F., Farru, G., Asunis, F., Malpei, F., Goi, D., Cappai, G., Canziani, R., 2022. Processes, applications and legislative framework for carbonized anaerobic digestate: opportunities and bottlenecks. A critical review. Energy Convers. Manag. 263, 115691.
DOI 10.1016/j.enconman.2022.115691
Chen, D., Chen, X., Sun, J., Zheng, Z., Fu, K., 2016. Pyrolysis polygeneration of pine nut shell: quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresour. Technol. 216, 629-636.
DOI 10.1016/j.biortech.2016.05.107
Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044-4064.
DOI 10.1016/j.biortech.2007.01.057
Choudhury, A., Lansing, S., 2020. Biochar addition with Fe impregnation to reduce H2S production from anaerobic digestion. Bioresour. Technol. 306, 123121.
DOI 10.1016/j.biortech.2020.123121
Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Ibeto, C.N., Li, H., Usmani, S.Q., Semple, K.T., 2017. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 61, 236-249.
DOI 10.1016/j.wasman.2016.11.028
Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Li, H., Usmani, S.Q., Semple, K.T., 2016. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour. Technol. 216, 142-149.
DOI 10.1016/j.biortech.2016.04.106
Fernando, J.C., Peiris, C., Navarathna, C.M., Gunatilake, S.R., Welikala, U., Wanasinghe, S.T., Ferez, F. 2021. Nitric acid surface pre-modification of novel Lasia spinosa biochar for enhanced methylene blue remediation. Ground. Sustain. Develop. 14, 100603.
DOI 10.1016/j.gsd.2021.100603
Gao, B., Wang, Y., Huang, L., Liu, S., 2021. Study on the performance of HNO3-modified biochar for enhanced medium temperature anaerobic digestion of food waste. Waste Manag. 135, 338-346.
DOI 10.1016/j.wasman.2021.09.020
Gascó, G., Blanco, C.G., Guerrero, F., Méndez Lázaro, A.M., 2005. The influence of organic matter on sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 74, 413-420.
DOI 10.1016/j.jaap.2004.08.007
Ghanim, B., Murnane, J.G., O’Donoghue, L., Courtney, R., Pembroke, J.T., O’Dwyer, T.F., 2020. Removal of vanadium from aqueous solution using a red mud modified saw dust biochar. J. Water Proc. Eng. 33, 101076.
DOI 10.1016/j.jwpe.2019.101076
Güzel, F., Sayğılı, H., Sayğılı, G.A., Koyuncu, F., Yılmaz, C., 2017. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J. Clean. Prod. 144, 260-265.
DOI 10.1016/j.jclepro.2017.01.029
Hung, C.-Y., Tsai, W.-T., Chen, J.-W., Lin, Y.-Q., Chang, Y.-M., 2017. Characterization of biochar prepared from biogas digestate. Waste Manag. 66, 53-60.
DOI 10.1016/j.wasman.2017.04.034
Kambo, H.S., Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359-378.
DOI 10.1016/j.rser.2015.01.050
Kobayashi, T., Kuramochi, H., 2022. Optimized production conditions and activation of biochar for effective promotion of long-chain fatty acid degradation in anaerobic digestion. Bioresour. Technol. 358, 127393.
DOI 10.1016/j.biortech.2022.127393
Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.K., Jung, J., Hyun, S., 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour. Technol. 148, 196-201.
DOI 10.1016/j.biortech.2013.08.135
Li, J.H., Zhang, M., Ye, Z.Y., Yang, C.M., 2019. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge. J. Environ. Sci. 76, 267-277.
DOI 10.1016/j.jes.2018.05.009
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., Chen, H., 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels 28, 5119-5127.
DOI 10.1021/ef500725c
Liao, W., Zhang, X., Ke, S., Yang, H., 2022. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crop. Prod. 186(15), 115238.
DOI 10.1016/j.indcrop.2022.115238
Linville, J.L., Shen, Y., Ignacio-de Leon, P.A., Schoene, R.P., Urgun-Demirtas M., 2017. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. Waste Manag. Res. 35, 669-679.
DOI 10.1177/0734242X17704716
Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J., 2020. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour. Technol. 302, 122841.
DOI 10.1016/j.biortech.2020.122841
Liu, W.-J., Jiang, H., Yu, H.-Q., 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251-12285.
DOI 10.1021/acs.chemrev.5b00195
Lü, F., Luo, C., Shao, L., He, P., 2016. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 90, 34-43.
DOI 10.1016/j.watres.2015.12.029
Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., 2018b. Biochar characteristics and early applications in anaerobic digestion - a review. J. Environ. Chem. Eng. 6, 2892-909.
DOI 10.1016/j.jece.2018.04.015
Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., Braglia, R., Canini, A., 2018a. Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: evaluation of the biogas yield. Energy 161, 663-669.
DOI 10.1016/j.energy.2018.07.196
Ma, J.Y., Bashir, M.A., Pan, J.T., Qiu, L., Liu, H.B., Zhai, L.M., Rehim, A., 2018. Enhancing performance and stability of anaerobic digestion of chicken manure using thermally modified bentonite. J. Clean. Prod. 183, 11-19.
DOI 10.1016/j.jclepro.2018.02.121
Manyuchi, M.M., Sukdeo, N., Stinner, W., Mutusva, T.N., 2021. Influence of sawdust based biochar on gold tailings wastewater heavy metal contaminants removal. S. Afr. J. Chem. Eng. 37, 81-91.
DOI 10.1016/j.sajce.2021.05.003
Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O., 2019. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew. Sustain. Energy Rev. 103, 291-307.
DOI 10.1016/j.rser.2018.12.048
Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., Zabaniotou, A., Barakat, A., Monteleone, M., 2016. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energy 169, 652-662.
DOI 10.1016/j.apenergy.2016.02.084
Mustafa, A.M., Poulsen, T.G., Sheng, K., 2016. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 180, 661-671.
DOI 10.1016/j.apenergy.2016.07.135
Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., Liu, H., 2019. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 275, 258-265.
DOI 10.1016/j.biortech.2018.12.068
Panigrahi, S., Dubey, B.K., 2019. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 143, 779-797.
DOI 10.1016/j.renene.2019.05.040
Pariyar, P., Kumari, K., Jain, M.K., Jadhao, P.S., 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 713, 136433.
DOI 10.1016/j.scitotenv.2019.136433
Parkin, G.F., Lynch, N.A., Kuo, W.-C., Van Keuren, E.L., Bhattacharya, S.K., 1990. Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Control Fed. 62 (6), 780-788. http://www.jstor.org/stable/25043913
Romero-Güiza, M.S., Peces, M., Astals, S., Benavent, J., Valls, J., Mata-Alvarez, J., 2014. Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion. Appl. Energy 135, 63-70.
DOI 10.1016/j.rser.2015.12.094
Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., Chen, W.-Y., 2018. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev. Chem. Eng. 35 (7), 777-815.
DOI 10.1515/revce-2018-0003
Salehiyoun, A.R., Zilouei, H., Safari, M., Di Maria, F., Samadi, S.H., Norouzi, O.,2022. An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets. Renew. Energy 186, 1-9.
DOI 10.1016/j.renene.2021.12.115
Şenol, H., Acikel, U., Demir, S., Oda, V., 2020. Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel 263, 116651.
DOI 10.1016/j.fuel.2019.116651
Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J., Zhao, L., 2020. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresour. Technol. 296, 122354.
DOI 10.1016/j.biortech.2019.122354
Shi, K.-y., Tao, X.-x., Hong, F.-f., He, H., Ji, Y.-h., Li, J.-l., 2012. Mechanism of oxidation of low rank coal by nitric acid. J. Coal Sci. Eng. China 18, 396-399.
DOI 10.1007/s12404-012-0411-6
Sunyoto, N.M.S., Zhu, M., Zhang, Z., Zhang, D., 2016. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 219, 29-36.
DOI 10.1016/j.biortech.2016.07.089
Tayibi, S., Monlau, F., Marias, F., Thevenin, N., Jimenez, R., Oukarroum, A., Zeroual, Y., Barakat, A., 2021. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate. Sci. Total Environ. 793, 148461.
DOI 10.1016/j.scitotenv.2021.148461
Tišma, M., Planinič, M., Bucič-Kojič, A., Panjičko, M., Zupančič, G.D., Zelič, B., 2018. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 253, 220-226.
DOI 10.1016/j.biortech.2018.01.037
Vu, T.M., Trinh, V.T., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S., Ngo, H.H., 2017. Removing ammonium from water using modified corncob-biochar. Sci. Total Environ. 579, 612-619.
DOI 10.1016/j.scitotenv.2016.11.050
Wei, Y., Hong, J., Ji, W., 2018. Thermal characterization and pyrolysis of digestate for phenol production. Fuel 232, 141-146.
DOI 10.1016/j.fuel.2018.05.134
Wen, Y., Shi, Z., Wang, S., Mu, W., Jönsson, P.G., Yang, W., 2021. Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization. Chem. Eng. J. 415, 129064.
DOI 10.1016/j.cej.2021.129064
Xu, F., Li, Y., Ge, X., Yang, L., Li, Y., 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresour. Technol. 247, 1047-1058
DOI 10.1016/j.biortech.2017.09.020
Xu, H., Li, Y., Hua, D., Zhao, Y., Mu, H., Chen, H., Chen, G., 2020. Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresour. Technol. 306, 123090.
DOI 10.1016/j.biortech.2020.123090
Yadav, M., Vivekanand, V., 2021. Combined fungal and bacterial pretreatment of wheat and pearl millet straw for biogas production – A study from batch to continuous stirred tank reactors. Bioresour. Technol. 321, 124523.
DOI 10.1016/j.biortech.2020.124523
Zhou, Y., Berruti, F., Greenhalf, C., Tian, X., Henry, H.A.L., 2017. Increased retention of soil nitrogen over winter by biochar application: implications of biochar pyrolysis temperature for plant nitrogen availability. Agric. Ecosyst. Environ. 236, 61-68.
DOI 10.1016/j.agee.2016.11.011
Zhu, L., Zhao, N., Tong, L., Lv, Y., 2018. Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv. 8, 21012-21019.
DOI 10.1039/C8RA03335H
Zieliński, M., Kisielewska, M., Dębowski, M., Elbruda, K., 2019. Effects of nutrients supplementation on enhanced biogas production from maize silage and cattle slurry mixture. Water Air Soil Pollut. 230, 117.
DOI 10.1007/s11270-019-4162-5
Patricia Battais, Francis Bonthoux, Sullivan Lechêne, Jennifer Klingler, Jérôme Grosjean, Nathalie Monta and Juliette Kunz-Iffli
Published 30 Sep 2023Kiranmani Janga, Begum Sameena and Gangagni Rao Anupoju
Published 30 Sep 2023Filippo Marchelli, Roberta Ferrentino, Giulia Ischia, Marco Calvi, Gianni Andreottola and Luca Fiori
Published 30 Sep 2023Title | Support | Price |
---|