an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Panagiotis Basinas - Institute of Environmental Technology, CEET, VSB–Technical University of Ostrava, Czech Republic
  • Kateřina Chamrádová - Institute of Environmental Technology, CEET, VSB–Technical University of Ostrava, Czech Republic
  • Olga Vosnaki - School of Environmental Engineering, Technical University of Crete, Greece
  • Jiří Rusín - Institute of Environmental Technology, CEET, VSB–Technical University of Ostrava, Czech Republic

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Biomass- and digestate-derived biochars were modified with nitric acid solution and examined in biochemical methane potential (BMP) tests to determine the effect of pretreatment on each of the different materials capability to improve the biogas production from the anaerobic digestion of conventional substrates such as corn silage. Methane yields from corn silage (0.308 m3kgVS-1) were over the average value for the specific type of lignocellulosic material. Addition of digestate-derived biochar (BCD) in AD process improved the methane production 1.13-fold. However, the sawdust-derived biochar (BCS) resulted in an even greater methane release of 0.374 m3kgVS-1. Chemical treatment reduced the pH of BCs from 10.29 and 11.54 to 3.10 and 2.81 for BCS and BCD, respectively while had a significant impact on materials composition almost removing the ash and metal elements from BCS and markedly decreasing 1.43-fold the ash fraction and by 70-75 % the minerals proportion in BCD. The presence of modified digestate-derived biochar (M-BCD) in a culture led to an enhanced methane production (0.402 m3kgVS-1) indicating that the specific additive exhibited a higher potential than all BCs to promote the efficiency of AD of a biomass feedstock. M-BCD also possessed the greatest capability to lessen an inhibition caused by H2S retaining the concentration of the toxic gas at levels lower than 100 ppm. On the other hand, modified BCS provoked a 9% abatement in methane yields providing evidence that nitric acid could have a neutral or slightly negative effect on the capability of a BC to improve the AD process.


Editorial History

  • Received: 24 Jul 2023
  • Revised: 22 Sep 2023
  • Accepted: 23 Sep 2023
  • Available online: 30 Sep 2023


Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S., 2012. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536-544.
DOI 10.1016/j.biortech.2012.05.042

Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M., Usman, A.R.A., 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 131, 374-379.
DOI 10.1016/j.biortech.2012.12.165

Basinas, P., Rusín, J., Chamrádová, K., 2021. Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environ. Res. 192, 110202.
DOI 10.1016/j.envres.2020.110202

Basinas, P., Rusín, J., Chamrádová, K., Kaldis, S.P., 2023. Pyrolysis of the anaerobic digestion solid by-product: Characterization of digestate decomposition and screening of the biochar use as soil amendment and as additive in anaerobic digestion. Energy Convers. Manag. 277, 116658.
DOI 10.1016/j.enconman.2023.116658

Basinas, P., Rusín, J., Chamrádová, K., Malachová, K., Rybková, Z., Novotný, Č., 2022. Fungal pretreatment parameters for improving methane generation from anaerobic digestion of corn silage. Bioresour. Technol. 345, 126526.
DOI 10.1016/j.biortech.2021.126526

Cao, Q., An, T., Xie, J., Liu, Y., Xing, L., Ling, X., Chen, C., 2022. Insight to the physiochemical properties and DOM of biochar under different pyrolysis temperature and modification conditions. J. Anal. Appl. Pyrol. 166, 105590.
DOI 10.1016/j.jaap.2022.105590

Catenacci, A., Boniardi, G., Mainardis, M., Gievers, F., Farru, G., Asunis, F., Malpei, F., Goi, D., Cappai, G., Canziani, R., 2022. Processes, applications and legislative framework for carbonized anaerobic digestate: opportunities and bottlenecks. A critical review. Energy Convers. Manag. 263, 115691.
DOI 10.1016/j.enconman.2022.115691

Chen, D., Chen, X., Sun, J., Zheng, Z., Fu, K., 2016. Pyrolysis polygeneration of pine nut shell: quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresour. Technol. 216, 629-636.
DOI 10.1016/j.biortech.2016.05.107

Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044-4064.
DOI 10.1016/j.biortech.2007.01.057

Choudhury, A., Lansing, S., 2020. Biochar addition with Fe impregnation to reduce H2S production from anaerobic digestion. Bioresour. Technol. 306, 123121.
DOI 10.1016/j.biortech.2020.123121

Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Ibeto, C.N., Li, H., Usmani, S.Q., Semple, K.T., 2017. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag. 61, 236-249.
DOI 10.1016/j.wasman.2016.11.028

Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Li, H., Usmani, S.Q., Semple, K.T., 2016. Impact of biochar on the anaerobic digestion of citrus peel waste. Bioresour. Technol. 216, 142-149.
DOI 10.1016/j.biortech.2016.04.106

Fernando, J.C., Peiris, C., Navarathna, C.M., Gunatilake, S.R., Welikala, U., Wanasinghe, S.T., Ferez, F. 2021. Nitric acid surface pre-modification of novel Lasia spinosa biochar for enhanced methylene blue remediation. Ground. Sustain. Develop. 14, 100603.
DOI 10.1016/j.gsd.2021.100603

Gao, B., Wang, Y., Huang, L., Liu, S., 2021. Study on the performance of HNO3-modified biochar for enhanced medium temperature anaerobic digestion of food waste. Waste Manag. 135, 338-346.
DOI 10.1016/j.wasman.2021.09.020

Gascó, G., Blanco, C.G., Guerrero, F., Méndez Lázaro, A.M., 2005. The influence of organic matter on sewage sludge pyrolysis. J. Anal. Appl. Pyrol. 74, 413-420.
DOI 10.1016/j.jaap.2004.08.007

Ghanim, B., Murnane, J.G., O’Donoghue, L., Courtney, R., Pembroke, J.T., O’Dwyer, T.F., 2020. Removal of vanadium from aqueous solution using a red mud modified saw dust biochar. J. Water Proc. Eng. 33, 101076.
DOI 10.1016/j.jwpe.2019.101076

Güzel, F., Sayğılı, H., Sayğılı, G.A., Koyuncu, F., Yılmaz, C., 2017. Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J. Clean. Prod. 144, 260-265.
DOI 10.1016/j.jclepro.2017.01.029

Hung, C.-Y., Tsai, W.-T., Chen, J.-W., Lin, Y.-Q., Chang, Y.-M., 2017. Characterization of biochar prepared from biogas digestate. Waste Manag. 66, 53-60.
DOI 10.1016/j.wasman.2017.04.034

Kambo, H.S., Dutta, A., 2015. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359-378.
DOI 10.1016/j.rser.2015.01.050

Kobayashi, T., Kuramochi, H., 2022. Optimized production conditions and activation of biochar for effective promotion of long-chain fatty acid degradation in anaerobic digestion. Bioresour. Technol. 358, 127393.
DOI 10.1016/j.biortech.2022.127393

Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y.K., Jung, J., Hyun, S., 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresour. Technol. 148, 196-201.
DOI 10.1016/j.biortech.2013.08.135

Li, J.H., Zhang, M., Ye, Z.Y., Yang, C.M., 2019. Effect of manganese oxide-modified biochar addition on methane production and heavy metal speciation during the anaerobic digestion of sewage sludge. J. Environ. Sci. 76, 267-277.
DOI 10.1016/j.jes.2018.05.009

Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., Chen, H., 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels 28, 5119-5127.
DOI 10.1021/ef500725c

Liao, W., Zhang, X., Ke, S., Yang, H., 2022. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crop. Prod. 186(15), 115238.
DOI 10.1016/j.indcrop.2022.115238

Linville, J.L., Shen, Y., Ignacio-de Leon, P.A., Schoene, R.P., Urgun-Demirtas M., 2017. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. Waste Manag. Res. 35, 669-679.
DOI 10.1177/0734242X17704716

Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J., 2020. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour. Technol. 302, 122841.
DOI 10.1016/j.biortech.2020.122841

Liu, W.-J., Jiang, H., Yu, H.-Q., 2015. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251-12285.
DOI 10.1021/acs.chemrev.5b00195

Lü, F., Luo, C., Shao, L., He, P., 2016. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 90, 34-43.
DOI 10.1016/j.watres.2015.12.029

Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., 2018b. Biochar characteristics and early applications in anaerobic digestion - a review. J. Environ. Chem. Eng. 6, 2892-909.
DOI 10.1016/j.jece.2018.04.015

Luz, F.C., Cordiner, S., Manni, A., Mulone, V., Rocco, V., Braglia, R., Canini, A., 2018a. Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: evaluation of the biogas yield. Energy 161, 663-669.
DOI 10.1016/

Ma, J.Y., Bashir, M.A., Pan, J.T., Qiu, L., Liu, H.B., Zhai, L.M., Rehim, A., 2018. Enhancing performance and stability of anaerobic digestion of chicken manure using thermally modified bentonite. J. Clean. Prod. 183, 11-19.
DOI 10.1016/j.jclepro.2018.02.121

Manyuchi, M.M., Sukdeo, N., Stinner, W., Mutusva, T.N., 2021. Influence of sawdust based biochar on gold tailings wastewater heavy metal contaminants removal. S. Afr. J. Chem. Eng. 37, 81-91.
DOI 10.1016/j.sajce.2021.05.003

Masebinu, S.O., Akinlabi, E.T., Muzenda, E., Aboyade, A.O., 2019. A review of biochar properties and their roles in mitigating challenges with anaerobic digestion. Renew. Sustain. Energy Rev. 103, 291-307.
DOI 10.1016/j.rser.2018.12.048

Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., Zabaniotou, A., Barakat, A., Monteleone, M., 2016. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energy 169, 652-662.
DOI 10.1016/j.apenergy.2016.02.084

Mustafa, A.M., Poulsen, T.G., Sheng, K., 2016. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 180, 661-671.
DOI 10.1016/j.apenergy.2016.07.135

Pan, J., Ma, J., Liu, X., Zhai, L., Ouyang, X., Liu, H., 2019. Effects of different types of biochar on the anaerobic digestion of chicken manure. Bioresour. Technol. 275, 258-265.
DOI 10.1016/j.biortech.2018.12.068

Panigrahi, S., Dubey, B.K., 2019. A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew. Energy 143, 779-797.
DOI 10.1016/j.renene.2019.05.040

Pariyar, P., Kumari, K., Jain, M.K., Jadhao, P.S., 2020. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Sci. Total Environ. 713, 136433.
DOI 10.1016/j.scitotenv.2019.136433

Parkin, G.F., Lynch, N.A., Kuo, W.-C., Van Keuren, E.L., Bhattacharya, S.K., 1990. Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Control Fed. 62 (6), 780-788.

Romero-Güiza, M.S., Peces, M., Astals, S., Benavent, J., Valls, J., Mata-Alvarez, J., 2014. Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion. Appl. Energy 135, 63-70.
DOI 10.1016/j.rser.2015.12.094

Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., Chen, W.-Y., 2018. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev. Chem. Eng. 35 (7), 777-815.
DOI 10.1515/revce-2018-0003

Salehiyoun, A.R., Zilouei, H., Safari, M., Di Maria, F., Samadi, S.H., Norouzi, O.,2022. An investigation for improving dry anaerobic digestion of municipal solid wastes by adding biochar derived from gasification of wood pellets. Renew. Energy 186, 1-9.
DOI 10.1016/j.renene.2021.12.115

Şenol, H., Acikel, U., Demir, S., Oda, V., 2020. Anaerobic digestion of cattle manure, corn silage and sugar beet pulp mixtures after thermal pretreatment and kinetic modeling study. Fuel 263, 116651.
DOI 10.1016/j.fuel.2019.116651

Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J., Zhao, L., 2020. Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresour. Technol. 296, 122354.
DOI 10.1016/j.biortech.2019.122354

Shi, K.-y., Tao, X.-x., Hong, F.-f., He, H., Ji, Y.-h., Li, J.-l., 2012. Mechanism of oxidation of low rank coal by nitric acid. J. Coal Sci. Eng. China 18, 396-399.
DOI 10.1007/s12404-012-0411-6

Sunyoto, N.M.S., Zhu, M., Zhang, Z., Zhang, D., 2016. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour. Technol. 219, 29-36.
DOI 10.1016/j.biortech.2016.07.089

Tayibi, S., Monlau, F., Marias, F., Thevenin, N., Jimenez, R., Oukarroum, A., Zeroual, Y., Barakat, A., 2021. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate. Sci. Total Environ. 793, 148461.
DOI 10.1016/j.scitotenv.2021.148461

Tišma, M., Planinič, M., Bucič-Kojič, A., Panjičko, M., Zupančič, G.D., Zelič, B., 2018. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 253, 220-226.
DOI 10.1016/j.biortech.2018.01.037

Vu, T.M., Trinh, V.T., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S., Ngo, H.H., 2017. Removing ammonium from water using modified corncob-biochar. Sci. Total Environ. 579, 612-619.
DOI 10.1016/j.scitotenv.2016.11.050

Wei, Y., Hong, J., Ji, W., 2018. Thermal characterization and pyrolysis of digestate for phenol production. Fuel 232, 141-146.
DOI 10.1016/j.fuel.2018.05.134

Wen, Y., Shi, Z., Wang, S., Mu, W., Jönsson, P.G., Yang, W., 2021. Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization. Chem. Eng. J. 415, 129064.
DOI 10.1016/j.cej.2021.129064

Xu, F., Li, Y., Ge, X., Yang, L., Li, Y., 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresour. Technol. 247, 1047-1058

DOI 10.1016/j.biortech.2017.09.020

Xu, H., Li, Y., Hua, D., Zhao, Y., Mu, H., Chen, H., Chen, G., 2020. Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresour. Technol. 306, 123090.
DOI 10.1016/j.biortech.2020.123090

Yadav, M., Vivekanand, V., 2021. Combined fungal and bacterial pretreatment of wheat and pearl millet straw for biogas production – A study from batch to continuous stirred tank reactors. Bioresour. Technol. 321, 124523.
DOI 10.1016/j.biortech.2020.124523

Zhou, Y., Berruti, F., Greenhalf, C., Tian, X., Henry, H.A.L., 2017. Increased retention of soil nitrogen over winter by biochar application: implications of biochar pyrolysis temperature for plant nitrogen availability. Agric. Ecosyst. Environ. 236, 61-68.
DOI 10.1016/j.agee.2016.11.011

Zhu, L., Zhao, N., Tong, L., Lv, Y., 2018. Structural and adsorption characteristics of potassium carbonate activated biochar. RSC Adv. 8, 21012-21019.
DOI 10.1039/C8RA03335H

Zieliński, M., Kisielewska, M., Dębowski, M., Elbruda, K., 2019. Effects of nutrients supplementation on enhanced biogas production from maize silage and cattle slurry mixture. Water Air Soil Pollut. 230, 117.
DOI 10.1007/s11270-019-4162-5