an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

OCCUPATIONAL EXPOSURE TO AMMONIA DURING INDUSTRIAL-SCALE ANAEROBIC DIGESTION COMPOSTING OF HOUSEHOLD WASTE

  • Patricia Battais - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Francis Bonthoux - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Sullivan Lechêne - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Jennifer Klingler - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Jérôme Grosjean - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Nathalie Monta - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France
  • Juliette Kunz-Iffli - Department of Process Engineering, The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, France

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

Biodegradable waste material can be exploited through anaerobic digestion, an oxygen-free multi-stage process often completed by a composting step, which harnesses the power of microorganisms to break down organic matter. This waste-treatment sector is growing rapidly in France as it allows the production of valuable digestates and biogas (biomethane). One of the main occupational health concerns in this sector is exposure to ammonia. The present work focused on ammonia emitted over the course of several stages in the anaerobic digestion and composting process, and assessed employee exposure to this pollutant. Exposure was measured for distinct worker activities and work areas, as well as during the various steps of the process. The results revealed non-negligible ammonia exposure for workers operating in the dehydration (until 55 ppmV in the workplace and 17 ppmV on the worker) and composting (until 45 ppmV in the workplace and 17 ppmV on the loader driver) areas on several sites. A classical monitoring approach was supplemented by the identification of explanatory parameters contributing to exposure: material emissivity, amounts stored or handled, and ventilation systems in use. Based on these elements, recommendations were made on prevention choices, including reducing emissions at source namely by process improvement and management of stored quantities, improving existing preventive systems such as capture at source or general ventilation, and employee education to raise awareness of waste management risks and improve practices.

Keywords


Editorial History

  • Received: 28 Feb 2024
  • Revised: 19 Apr 2024
  • Accepted: 02 May 2024
  • Available online: 14 Jun 2024

References

ADEME, Dabert, P., Dirrenberger, P., De Guardia, A., Bonthoux, F., Rincon, C., Lechêne, S., & Silvente, E. (2019). MAMBO : Maitrise des émissions d’ammoniac en usine de méthanisation-compostage de biodéchets et d’ordures ménagères résiduelles. 110

ADEME, Mallard, P., Zdanevitch, I., Pradelle, F., & Frejafon, E. (2011). Projet EMISITE : évaluation sur site de différentes méthodes de mesure des émissions gazeuses d’une installation de compostage

Bakhiyi, B., Marchand, G., Cloutier, Y., Beaudet, Y., Veillette, M., Dubuis, M. E., M’barèche, H., Zayed, J., Duchaine, C., & Lavoie, J. (2018). Exposition des travailleurs aux substances chimiques et aux agents biologiques dans les usines de biométhanisation des matières organiques putrescibles - Évaluation exploratoire

Battais, P., Bonthoux, F., Lechene, S., Kunz-Iffli, J., Monta, N., Grosjean, J., & Duquenne, P. (2022). A Comparative Study of Real-Time Monitoring Detection and Active Sampling Measurements in Evaluating Exposure Levels to Ammonia. Detritus, 21, 94-104.
DOI 10.31025/2611-4135/2022.16224

Beck-Friis, B., Smars, S., Jonsson, H., Eklind, Y., & Kirchmann, H. (2003). Composting of source-separated household organics at different oxygen levels: Gaining an understanding of the emission dynamics Compost Science & Utilization, 11(1), 41-50

Bell, M. W., Tang, Y. S., Dragosits, U., Flechard, C. R., Ward, P., & Braban, C. F. (2016). Ammonia emissions from an anaerobic digestion plant estimated using atmospheric measurements and dispersion modelling. Waste Management, 56, 113-124.

Borka, G., Menzi, H., Neftel, A., & Langhans, W. (2000, 6-9 September). Development of an empirical model for ammonia emissions from slurry in cattle houses. (Ed.),^(Eds.). Proc. conference of the FAO/ESCORENA network on Recycling Agricultural, Municipal and Industrial Resiudes in Agriculture (RAMIRAN), Gargnano, Italy, p.333-335

British Standards Institution. (2006). BS EN ISO 16000-10:2006 - Indoor air. Determination of the emission of volatile organic compounds from building products and furnishing. Emission test cell method

Chen, H., Wang, W., Xue, L., Chen, C., Liu, G., & Zhang, R. (2016). Effects of ammonia on anaerobic digestion of food waste: process performance and microbial community. Energy & Fuels, 30(7), 5749-5757

Damien, A. (2016). Guide du traitement des déchets - 7e éd : Réglementation et choix des procédés. Dunod, 269-279

de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., & Petiot, C. (2010a). Comparison of five organic wastes regarding their behaviour during composting: part 1, biodegradability, stabilization kinetics and temperature rise. Waste Manag, 30(3), 402-414.
DOI 10.1016/j.wasman.2009.10.019

de Guardia, A., Mallard, P., Teglia, C., Marin, A., Le Pape, C., Launay, M., Benoist, J. C., & Petiot, C. (2010b). Comparison of five organic wastes regarding their behaviour during composting: part 2, nitrogen dynamic. Waste Manag, 30(3), 415-425.
DOI 10.1016/j.wasman.2009.10.018

de Guardia, A., Petiot, C., Rogeau, D., & Druilhe, C. (2008). Influence of aeration rate on nitrogen dynamics during composting. Waste Manag, 28(3), 575-587.
DOI 10.1016/j.wasman.2007.02.007

Dinuccio, E., Berg, W., & Balsari, P. (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448-2459.

Dirrenberger, P. (2020). Méthanisation (Partie 2) : Technologies de digestion et procédés utilisés – Etat de l’art. Techniques Sciences Méthodes, 9, 33-56

Eklund, B. (1992). Practical Guidance for Flux Chamber Measurements of Fugitive Volatile Organic Emission Rates. Journal of The Air & Waste Management Association - J AIR WASTE MANAGE ASSOC, 42, 1583-1591.
DOI 10.1080/10473289.1992.10467102

Fukumoto, Y., Osada, T., Hanajima, D., & Haga, K. (2003). Patterns and quantities of NH(3), N(2)O and CH(4) emissions during swine manure composting without forced aeration--effect of compost pile scale. Bioresour Technol, 89(2), 109-114.
DOI 10.1016/s0960-8524(03)00060-9

Hoff, S. J., Bundy, D. S., Nelson, M. A., Zelle, B. C., Jacobson, L. D., Heber, A. J., Ni, J., Zhang, Y., Koziel, J. A., & Beasley, D. B. (2006). Emissions of ammonia, hydrogen sulfide, and odor before, during, and after slurry removal from a deep-pit swine finisher. J Air Waste Manag Assoc, 56(5), 581-590.
DOI 10.1080/10473289.2006.10464472

INRS. (2009). Les détecteurs portables à photo-ionisation pour la sécurité et l’hygiène des lieux de travail – Aide-mémoire technique. ED 6053, available at www.inrs.fr03

INRS. (2020). Fiche MétroPol : Ammoniac et sels d’ammonium. M-13, available at www.inrs.fr

INRS. (2021). Fiche toxicologique : Ammoniac et solutions aqueuses. FT16, available at http://www.inrs.fr

INRS. (2022a). Les valeurs limites d’exposition professionnelle. ED 6443, available at http://www.inrs.fr

INRS. (2022b). Liste des VLEP françaises – Valeurs limites d’exposition professionnelle établies pour les substances chimiques. Outil 65, available at www.inrs.fr

Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Manag, 31(8), 1737-1744.
DOI 10.1016/j.wasman.2011.03.021

Krakat, N., Demirel, B., Anjum, R., & Dietz, D. (2017). Methods of ammonia removal in anaerobic digestion: a review. Water Sci Technol, 76(7-8), 1925-1938.
DOI 10.2166/wst.2017.406

Laussmann, D., & Helm, D. (2004). Air Change Measurements Using Tracer Gases. Indoor Air Quality, 365-404

Lavoie, J., & Marchand, G. (1997). Détermination des caractéristiques à considérer d’un point de vue santé et sécurité des travailleurs dans les centres de compostage des déchets domestiques (Etudes et Recherches

Lemes, Y. M., Nyord, T., Feilberg, A., Hafner, S. D., & Pedersen, J. (2023). Effect of anaerobic digestion on odor and ammonia emission from land-applied cattle manure. J Environ Manage, 338, 117815.
DOI 10.1016/j.jenvman.2023.117815

Lin, L., Xua, F., Gea, X., & Lia, Y. (2018). Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renewable and Sustainable Energy Reviews, 89, 151-167

Martin, P., Brand, F., & Servais, M. (1999). Correlation of the Exposure to a Pollutant with a Task-Related Action or Workplace: The CAPTIV™ System. The Annals of Occupational Hygiene, 43(4), 221-233.

Moletta, R. (2015). La méthanisation (3° Éd.). Tec & Doc Lavoisier, 528

Mosquera, J., Dooren, H. J. C. v., Aarnink, A. J. A., & Ogink, N. W. M. (2010). Development of a fast measurement method for the determination of ammonia emission reduction from floor related measures. (Ed.),^(Eds.)

Nadal, M., Inza, I., Schuhmacher, M., Figueras, M. J., & Domingo, J. L. (2009). Health risks of the occupational exposure to microbiological and chemical pollutants in a municipal waste organic fraction treatment plant. Int J Hyg Environ Health, 212(6), 661-669.
DOI 10.1016/j.ijheh.2009.06.002

Ni, J. (1999). Mechanistic Models of Ammonia Release from Liquid Manure: a Review. Journal of Agricultural Engineering Research, 72(1), 1-17.

Park, J., Kang, T., Heo, Y., Lee, K., Kim, K., Lee, K., & Yoon, C. (2020). Evaluation of Short-Term Exposure Levels on Ammonia and Hydrogen Sulfide During Manure-Handling Processes at Livestock Farms. Saf Health Work, 11(1), 109-117.
DOI 10.1016/j.shaw.2019.12.007

Peigné, J., & Girardin, P. (2001). Compostage et environnement. Alter Agri, 49, 6-9

Poirot, P., Duquenne, P., Grosjean, J., Monta, N., Nicot, T., Zimmermann, F., & Koehler, V. (2010). Approche des risques chimiques et microbiologiques dans le secteur du compostage. Hygiène et sécurité du travail, 221, 3-16

Pöther, D.-C., Schneider, D., Prott, U., Karmann, J., Klug, K., Heubach, N., Hebisch, R., & Jäckel, U. (2021). Multiplexed Workplace Measurements in Biogas Plants Reveal Compositional Changes in Aerosol Properties. Annals of Work Exposures and Health.
DOI 10.1093/annweh/wxab036

Preble, C. V., Chen, S. S., Hotchi, T., Sohn, M. D., Maddalena, R. L., Russell, M. L., Brown, N. J., Scown, C. D., & Kirchstetter, T. W. (2020). Air Pollutant Emission Rates for Dry Anaerobic Digestion and Composting of Organic Municipal Solid Waste. Environ Sci Technol, 54(24), 16097-16107.
DOI 10.1021/acs.est.0c03953

RIS International Ltd. (2005). Feasibility of Generating Green Power through Anaerobic Digestion of Garden Refuse from the Sacramento Area (

Robertson, S., Douglas, P., Jarvis, D., & Marczylo, E. (2019). Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: A systematic review update. Int J Hyg Environ Health, 222(3), 364-386.
DOI 10.1016/j.ijheh.2019.02.006

Rocamora, I., Wagland, S. T., Hassard, F., Villa, R., Peces, M., Simpson, E. W., Fernández, O., & Bajón-Fernández, Y. (2023). Inhibitory mechanisms on dry anaerobic digestion: Ammonia, hydrogen and propionic acid relationship. Waste Manag, 161, 29-42.
DOI 10.1016/j.wasman.2023.02.009

Sandberg, M. (1981). What is ventilation efficiency? Building and Environment, 16(2), 123-135.

Sundblad, B. M., Larsson, B. M., Acevedo, F., Ernstgard, L., Johanson, G., Larsson, K., & Palmberg, L. (2004). Acute respiratory effects of exposure to ammonia on healthy persons. Scand J Work Environ Health, 30(4), 313-321.
DOI 10.5271/sjweh.800

Wheeler, E., Topper, P., Adviento-Borbe, M., Brandt, R., Topper, D., & Elliott, H. (2010). Flux chamber validation for ammonia measurement versus whole room emission. (Ed.),^(Eds.). Paper CSBE100656 presented at the “XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR)

Wolkoff, P., Clausen, P. A., & Nielsen, P. A. (1995). Application of the Field and Laboratory Emission Cell “FLEC” ‐ Performance Study, Intercomparison Study, and Case Study of Damaged Linoleum in an Office. Indoor Air, 5, 196-203

Zeshan, S. (2012). Dry anaerobic digestion of municipal solid waste and digestate management strategies, Asian Institute of Technology]