an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

INNOVATIVE BIOENERGY SOLUTIONS FOR DEVELOPING NATIONS: DARK FERMENTATION AND ANAEROBIC DIGESTION OF ABATTOIR WASTE

  • Gaogane Jephtah Gaogane - School of Engineering, University of KwaZulu-Natal, South Africa
  • Patrick Sekoai - Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, South Africa
  • Cristina Trois - School of Engineering, University of KwaZulu-Natal, South Africa - Centre for Renewable and Sustainable Energy Studies, South Africa

Released under CC BY-NC-ND

Copyright: © 2024 CISA Publisher


Abstract

This study investigates the energy recovery potential of abattoir waste by subsequent Dark Fermentation (DF) and Anaerobic Digestion (AD) processes. The 2-reactor system assesses the effect of recycling and parametric optimisation. A simulation model based on the Anaerobic Digestion model 1 (ADM1) was developed and applied for biogas production, which defines carbohydrates, lipids and proteins (CLP) as the main components of anaerobic digestion. The motivation for this work emanates from that a major cause for failure of anaerobic plants is inconsistent feedstock and process design, thus, process modelling provides a cheaper and more reliable evaluation of process components and parameters. Furthermore, a great amount of abattoir waste is generated, coupled with difficulty in disposal thus raising the waste management cost. The study investigated the effect of CLP on biogas yield and assessed the outcome from a co-digestion of manure, blood, and tissue as major abattoir waste streams. Impact on hydrogen yield was in the order of lipids>carbohydrates>proteins whereas for methane it was carbohydrates>lipids>proteins. Manure had the highest impact on methane yield rate, followed by blood, and tissue, whereas hydrogen production was in the order of blood, tissue, and lastly manure, which performed poorly. Recycling improved methane yield by 32%. The study provides optimisation data and linear correlation models for estimating yield based on the three substrates. The study furthermore presents hydrogen and methane potential of various abattoir waste stream. Based on the South African waste stream, there is potential to generate 0,068 – 156,26 GW of energy from abattoir waste.

Keywords


Editorial History

  • Received: 04 Nov 2024
  • Revised: 19 May 2025
  • Accepted: 07 Jul 2025
  • Available online: 12 Nov 2025

References

Ahmed, S. F., Rafa, N., Mofijur, M., Badruddin, I. A., Inayat, A., Ali, M. S., Farrok, O., & Yunus Khan, T. M. (2021). Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis. In Frontiers in Energy Research (Vol. 9). Frontiers Media S.A.
DOI 10.3389/fenrg.2021.753878

Alhraishawi, A., & Aslan, S. (2022). Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study. European Scientific Journal ESJ, 8.
DOI 10.19044/esipreprint.8.2022.p197

Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels, 10(2), 181–191.
DOI 10.1080/17597269.2017.1309854

Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet, M., Smidt, H., & Stams, A. J. M. (2009). Waste lipids to energy: How to optimise methane production from long-chain fatty acids (LCFA). In Microbial Biotechnology (Vol. 2, Issue 5, pp. 538–550).
DOI 10.1111/j.1751-7915.2009.00100.x

Amado, M., Barca, C., Hernández, M. A., & Ferrasse, J. H. (2021). Evaluation of Energy Recovery Potential by Anaerobic Digestion and Dark Fermentation of Residual Biomass in Colombia. Frontiers in Energy Research, 9.
DOI 10.3389/fenrg.2021.690161

Angelidaki, l, Ellegaard, L., & Ahring, B. (1993). A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates: Focusing on Ammonia Inhibition

Angelidaki, I., Ellegaard, L., & Ahring, B. K. (1993). A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnology and Bioengineering, 42(2), 159–166.
DOI 10.1002/bit.260420203

Angelidaki, I., Ellegaard, L., & Ahring, B. K. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and Bioengineering, 63(3), 363–372.
DOI 10.1002/(SICI)1097-0290(19990505)63:3<363::AID-BIT13>3.0.CO;2-Z

Baker, B. R., Mohamed, R., Al-Gheethi, A., & Aziz, H. A. (2021). Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology, 42(6), 880–899.
DOI 10.1080/01932691.2020.1721007

Borowski, S., & Kubacki, P. (2015). Co-digestion of pig slaughterhouse waste with sewage sludge. Waste Management, 40, 119–126.
DOI 10.1016/j.wasman.2015.03.021

Boughou, Nisrine., Majdy, Imane., Cherkaoui, Essediya., Khamar, Mohamed., & Nounah, Abderrahman. (2018). Effect of pH and time on the treatment by coagulation from slaughterhouse of the city of Rabat. MATEC Web of Conferences, 149, 02091.
DOI 10.1051/matecconf/201714902091

Breure, A., Mooijman, K., & van Andel, J. (1986). Protein degradation in anaerobic digestion: Influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied Microbiology and Biotechnology

Budiyono, I., Widiasa, I. N., Johari, S., & Sunarso. (2011). Study on Slaughterhouse Wastes Potency and Characteristic for Biogas Production. Internat. J. of Waste Resources, 1(2), 4–7.
DOI 10.4172/2252-5211.1000102

Cieciura-Włoch, W., & Borowski, S. (2019). Biohydrogen production from wastes of plant and animal origin via dark fermentation. Journal of Environmental Engineering and Landscape Management, 27(2), 101–113.
DOI 10.3846/jeelm.2019.9806

CSIR. (2018). South africa poultry abattoirs water efficiency guideline

Dell’ Orto, A. (2017). Effect Of pH and Heat Shock Treatment On Fermentative Hydrogen Production From Food Waste. Universita Degli Studi Di Cagliari

Dell’Orto, A., & Trois, C. (2022). Considerations on bio-hydrogen production from organic waste in South African municipalities: A review. South African Journal of Science, 118.
DOI 10.17159/sajs.2022/12652

DTI. (2019). The South African Poultry Sector Master Plan. www.lhedtic.gov.za

Gaogane, G. J. (2021). Assessment and Feasibility of Converting Municipal Organic Waste Into Biogas Using Anaerobic Digestion: A South African Case-Study. University of KwaZulu-Natal

GDARD. (2009). Guideline Manual For The Management Of Abattoirs And Other Waste Of Animal Origin. www.gdard.gpg.gov.za

Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudié, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.
DOI 10.1016/j.apenergy.2015.01.045ï

Ghorbanian, M. (2014). Enhancement of anaerobic digestion of actual industrial wastewaters : reactor stability and kinetic modeling. [University of Louisville].
DOI 10.18297/etd/494

Gogela, U., Pineo, C., & Basson, L. (2017). The business case for biogas from solid waste in the Western. November, 40. https://www.greencape.co.za/assets/Uploads/GreenCape-Biogas-Business-Case-Final.pdf

Gu, S., Xing, H., Zhang, L., Wang, R., Kuang, R., & Li, Y. (2024). Effects of food wastes based on different components on digestibility and energy recovery in hydrogen and methane co-production. Heliyon, 10(3).
DOI 10.1016/j.heliyon.2024.e25421

Hejnfelt, A., & Angelidaki, I. (2009). Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy, 33(8), 1046–1054.
DOI 10.1016/j.biombioe.2009.03.004

Hussien, M., Jadhav, D. A., Le, T. T. Q., Jang, J. H., Jang, J. K., & Chae, K. J. (2024). Tuning dark fermentation operational conditions for improved biohydrogen yield during co-digestion of swine manure and food waste. Process Safety and Environmental Protection, 187, 1496–1507.
DOI 10.1016/j.psep.2024.05.068

Jain, R., Panwar, N. L., Jain, S. K., Gupta, T., Agarwal, C., & Meena, S. S. (2022). Bio-hydrogen production through dark fermentation: an overview. In Biomass Conversion and Biorefinery (Vol. 14, Issue 12, pp. 12699–12724). Springer Science and Business Media Deutschland GmbH.
DOI 10.1007/s13399-022-03282-7

Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilisation of byproducts and waste materials from meat, poultry and fish processing industries: A review. In Journal of Food Science and Technology (Vol. 49, Issue 3, pp. 278–293).
DOI 10.1007/s13197-011-0290-7

Liu, D. (2008). Bio-hydrogen production by dark fermentation from organic wastes and residures. DTU

Maman, M., Sundaram, M., & Vivekanandan, V. (2024). Recycling of slaughterhouse waste cattle rumen fluid for biohydrogen production using Staphylococcus sciuri MK898925.1. Energy Sources, Part A: Recovery, Utilisation and Environmental Effects, 46(1), 2147–2157.
DOI 10.1080/15567036.2023.2298282

Manogaran, M. D., Hakimi, M., Basheer Ahmad, M. H. N., Shamsuddin, R., Lim, J. W., M Hassan, M. A., & Sahrin, N. T. (2023). Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study. Sustainability (Switzerland), 15(7).
DOI 10.3390/su15075813

Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80(November), 756–764.
DOI 10.1016/j.rser.2017.05.068

Mozhiarasi, V., & Natarajan, T. S. (2022). Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH.
DOI 10.1007/s13399-022-02352-0

Müller, J. (2017). Water and wastewater management in the red meat abattoir industry (2nd ed.). Water Research Commission

Neethling, G. (2014). WASTE MANAGEMENT: RED MEAT ABATTOIRS

Neves, L., Oliveira, R., & Alves, M. M. (2009). Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water Research, 43(20), 5142–5150.
DOI 10.1016/j.watres.2009.08.013

Okonkwo, O. (2020). Enhancement of thermophilic dark fermentative hydrogen production and the use of molecular biology methods for bioprocess monitoring. https://theses.hal.science/tel-03066327

Ortner, M., Leitzinger, K., Skupien, S., Bochmann, G., & Fuchs, W. (2014). Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresource Technology, 174, 222–232.
DOI 10.1016/j.biortech.2014.10.023

Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Springer.
DOI 10.1007/s13399-020-00965-x/Published

Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., & Flotats, X. (2011). Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology, 102(3), 2219–2227.
DOI 10.1016/j.biortech.2010.09.121

Qekwana, D. N. (2012). Occupational health and food safety risks associated with traditional slaughter practices of goats in Gauteng, South Africa. University of Pretoria

Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13.
DOI 10.1016/j.biortech.2014.01.051

Ramasamy, G., Goodman, A. H., Lahuri, H. M., Md Shah, S. S., & Sabil, K. M. (2022). Process simulation of anaerobic digestion for methane production using aspen plus. IOP Conference Series: Materials Science and Engineering, 1257(1), 012002.
DOI 10.1088/1757-899x/1257/1/012002

Red Meat Association. (2021). Red Meat Association Annual-Report-2021

Roberts, H., de Jager, L., & Blight, G. (2009). Waste-handling practices at red meat abattoirs in South Africa. Waste Management and Research, 27(1), 25–30.
DOI 10.1177/0734242X07085754

Sawyerr, N., Trois, C., & Workneh, T. (2019). Identification and characterisation of potential feedstock for biogas production in South Africa. Journal of Ecological Engineering, 20(6), 103–116.
DOI 10.12911/22998993/108652

Sekoai, P. T., Yoro, K. O., & Daramola, M. O. (2018). Effect of nitrogen gas sparging on dark fermentative biohydrogen production using suspended and immobilised cells of anaerobic mixed bacteria from potato waste. Biofuels, 9(5), 595–604.
DOI 10.1080/17597269.2018.1432275

Serrano, R. P., & Knud, S. : (2011). Biogas Process Simulation using Aspen Plus. Syddansk Universitet

Singh, G., Shamsuddin, M. R., Aqsha, & Lim, S. W. (2018). Characterisation of Chicken Manure from Manjung Region. IOP Conference Series: Materials Science and Engineering, 458(1).
DOI 10.1088/1757-899X/458/1/012084

Sittijunda, S., Baka, S., Jariyaboon, R., Reungsang, A., Imai, T., & Kongjan, P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 8(10).
DOI 10.3390/fermentation8100537

Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. (2017). Thermal treatment of waste from the meat industry in high scale rotary kiln. International Journal of Environmental Science and Technology, 14(6), 1157–1168.
DOI 10.1007/s13762-016-1223-9

Tchatchouang, C. D. K., Fri, J., De Santi, M., Brandi, G., Schiavano, G. F., Amagliani, G., & Ateba, C. N. (2020). Listeriosis outbreak in south africa: A comparative analysis with previously reported cases worldwide. In Microorganisms (Vol. 8, Issue 1). MDPI AG.
DOI 10.3390/microorganisms8010135

Thomas, J., Govender, N., McCarthy, K. M., Erasmus, L. K., Doyle, T. J., Allam, M., Ismail, A., Ramalwa, N., Sekwadi, P., Ntshoe, G., Shonhiwa, A., Essel, V., Tau, N., Smouse, S., Ngomane, H. M., Disenyeng, B., Page, N. A., Govender, N. P., Duse, A. G., … Blumberg, L. H. (2020). Outbreak of Listeriosis in South Africa Associated with Processed Meat. New England Journal of Medicine, 382(7), 632–643.
DOI 10.1056/nejmoa1907462

Tolera, S. T., & Alemu, F. K. (2020). Potential of Abattoir Waste for Bioenergy as Sustainable Management, Eastern Ethiopia, 2019. Journal of Energy, 2020, 1–9.
DOI 10.1155/2020/6761328

Water Research Commission. (2017). Water and wastewater management in the red meat abattoir industry

Western Cape Government. (2016). The mini guide to the Management of Abattoir Waste

Xiong, X., Gong, Shuying, Zhu, Pengfei, & Li, N. (2024). Preparation Processes and Influencing Factors of Dark Fermentative Biohydrogen Production from Animal Manure. https://ssrn.com/abstract=4840340