Released under CC BY-NC-ND
Copyright: © 2024 CISA Publisher
Ahmed, S. F., Rafa, N., Mofijur, M., Badruddin, I. A., Inayat, A., Ali, M. S., Farrok, O., & Yunus Khan, T. M. (2021). Biohydrogen Production From Biomass Sources: Metabolic Pathways and Economic Analysis. In Frontiers in Energy Research (Vol. 9). Frontiers Media S.A.
DOI 10.3389/fenrg.2021.753878
Alhraishawi, A., & Aslan, S. (2022). Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study. European Scientific Journal ESJ, 8.
DOI 10.19044/esipreprint.8.2022.p197
Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process Simulation of Two-Stage Anaerobic Digestion for Methane Production. Biofuels, 10(2), 181–191.
DOI 10.1080/17597269.2017.1309854
Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet, M., Smidt, H., & Stams, A. J. M. (2009). Waste lipids to energy: How to optimise methane production from long-chain fatty acids (LCFA). In Microbial Biotechnology (Vol. 2, Issue 5, pp. 538–550).
DOI 10.1111/j.1751-7915.2009.00100.x
Amado, M., Barca, C., Hernández, M. A., & Ferrasse, J. H. (2021). Evaluation of Energy Recovery Potential by Anaerobic Digestion and Dark Fermentation of Residual Biomass in Colombia. Frontiers in Energy Research, 9.
DOI 10.3389/fenrg.2021.690161
Angelidaki, l, Ellegaard, L., & Ahring, B. (1993). A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates: Focusing on Ammonia Inhibition
Angelidaki, I., Ellegaard, L., & Ahring, B. K. (1993). A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnology and Bioengineering, 42(2), 159–166.
DOI 10.1002/bit.260420203
Angelidaki, I., Ellegaard, L., & Ahring, B. K. (1999). A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and Bioengineering, 63(3), 363–372.
DOI 10.1002/(SICI)1097-0290(19990505)63:3<363::AID-BIT13>3.0.CO;2-Z
Baker, B. R., Mohamed, R., Al-Gheethi, A., & Aziz, H. A. (2021). Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology, 42(6), 880–899.
DOI 10.1080/01932691.2020.1721007
Borowski, S., & Kubacki, P. (2015). Co-digestion of pig slaughterhouse waste with sewage sludge. Waste Management, 40, 119–126.
DOI 10.1016/j.wasman.2015.03.021
Boughou, Nisrine., Majdy, Imane., Cherkaoui, Essediya., Khamar, Mohamed., & Nounah, Abderrahman. (2018). Effect of pH and time on the treatment by coagulation from slaughterhouse of the city of Rabat. MATEC Web of Conferences, 149, 02091.
DOI 10.1051/matecconf/201714902091
Breure, A., Mooijman, K., & van Andel, J. (1986). Protein degradation in anaerobic digestion: Influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied Microbiology and Biotechnology
Budiyono, I., Widiasa, I. N., Johari, S., & Sunarso. (2011). Study on Slaughterhouse Wastes Potency and Characteristic for Biogas Production. Internat. J. of Waste Resources, 1(2), 4–7.
DOI 10.4172/2252-5211.1000102
Cieciura-Włoch, W., & Borowski, S. (2019). Biohydrogen production from wastes of plant and animal origin via dark fermentation. Journal of Environmental Engineering and Landscape Management, 27(2), 101–113.
DOI 10.3846/jeelm.2019.9806
CSIR. (2018). South africa poultry abattoirs water efficiency guideline
Dell’ Orto, A. (2017). Effect Of pH and Heat Shock Treatment On Fermentative Hydrogen Production From Food Waste. Universita Degli Studi Di Cagliari
Dell’Orto, A., & Trois, C. (2022). Considerations on bio-hydrogen production from organic waste in South African municipalities: A review. South African Journal of Science, 118.
DOI 10.17159/sajs.2022/12652
DTI. (2019). The South African Poultry Sector Master Plan. www.lhedtic.gov.za
Gaogane, G. J. (2021). Assessment and Feasibility of Converting Municipal Organic Waste Into Biogas Using Anaerobic Digestion: A South African Case-Study. University of KwaZulu-Natal
GDARD. (2009). Guideline Manual For The Management Of Abattoirs And Other Waste Of Animal Origin. www.gdard.gpg.gov.za
Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudié, R., Lens, P. N. L., & Esposito, G. (2015). A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 144, 73–95.
DOI 10.1016/j.apenergy.2015.01.045ï
Ghorbanian, M. (2014). Enhancement of anaerobic digestion of actual industrial wastewaters : reactor stability and kinetic modeling. [University of Louisville].
DOI 10.18297/etd/494
Gogela, U., Pineo, C., & Basson, L. (2017). The business case for biogas from solid waste in the Western. November, 40. https://www.greencape.co.za/assets/Uploads/GreenCape-Biogas-Business-Case-Final.pdf
Gu, S., Xing, H., Zhang, L., Wang, R., Kuang, R., & Li, Y. (2024). Effects of food wastes based on different components on digestibility and energy recovery in hydrogen and methane co-production. Heliyon, 10(3).
DOI 10.1016/j.heliyon.2024.e25421
Hejnfelt, A., & Angelidaki, I. (2009). Anaerobic digestion of slaughterhouse by-products. Biomass and Bioenergy, 33(8), 1046–1054.
DOI 10.1016/j.biombioe.2009.03.004
Hussien, M., Jadhav, D. A., Le, T. T. Q., Jang, J. H., Jang, J. K., & Chae, K. J. (2024). Tuning dark fermentation operational conditions for improved biohydrogen yield during co-digestion of swine manure and food waste. Process Safety and Environmental Protection, 187, 1496–1507.
DOI 10.1016/j.psep.2024.05.068
Jain, R., Panwar, N. L., Jain, S. K., Gupta, T., Agarwal, C., & Meena, S. S. (2022). Bio-hydrogen production through dark fermentation: an overview. In Biomass Conversion and Biorefinery (Vol. 14, Issue 12, pp. 12699–12724). Springer Science and Business Media Deutschland GmbH.
DOI 10.1007/s13399-022-03282-7
Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilisation of byproducts and waste materials from meat, poultry and fish processing industries: A review. In Journal of Food Science and Technology (Vol. 49, Issue 3, pp. 278–293).
DOI 10.1007/s13197-011-0290-7
Liu, D. (2008). Bio-hydrogen production by dark fermentation from organic wastes and residures. DTU
Maman, M., Sundaram, M., & Vivekanandan, V. (2024). Recycling of slaughterhouse waste cattle rumen fluid for biohydrogen production using Staphylococcus sciuri MK898925.1. Energy Sources, Part A: Recovery, Utilisation and Environmental Effects, 46(1), 2147–2157.
DOI 10.1080/15567036.2023.2298282
Manogaran, M. D., Hakimi, M., Basheer Ahmad, M. H. N., Shamsuddin, R., Lim, J. W., M Hassan, M. A., & Sahrin, N. T. (2023). Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study. Sustainability (Switzerland), 15(7).
DOI 10.3390/su15075813
Matheri, A. N., Ndiweni, S. N., Belaid, M., Muzenda, E., & Hubert, R. (2017). Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 80(November), 756–764.
DOI 10.1016/j.rser.2017.05.068
Mozhiarasi, V., & Natarajan, T. S. (2022). Slaughterhouse and poultry wastes: management practices, feedstocks for renewable energy production, and recovery of value added products. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH.
DOI 10.1007/s13399-022-02352-0
Müller, J. (2017). Water and wastewater management in the red meat abattoir industry (2nd ed.). Water Research Commission
Neethling, G. (2014). WASTE MANAGEMENT: RED MEAT ABATTOIRS
Neves, L., Oliveira, R., & Alves, M. M. (2009). Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil. Water Research, 43(20), 5142–5150.
DOI 10.1016/j.watres.2009.08.013
Okonkwo, O. (2020). Enhancement of thermophilic dark fermentative hydrogen production and the use of molecular biology methods for bioprocess monitoring. https://theses.hal.science/tel-03066327
Ortner, M., Leitzinger, K., Skupien, S., Bochmann, G., & Fuchs, W. (2014). Efficient anaerobic mono-digestion of N-rich slaughterhouse waste: Influence of ammonia, temperature and trace elements. Bioresource Technology, 174, 222–232.
DOI 10.1016/j.biortech.2014.10.023
Osman, A. I., Deka, T. J., Baruah, D. C., & Rooney, D. W. (2020). Critical challenges in biohydrogen production processes from the organic feedstocks. Springer.
DOI 10.1007/s13399-020-00965-x/Published
Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., & Flotats, X. (2011). Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology, 102(3), 2219–2227.
DOI 10.1016/j.biortech.2010.09.121
Qekwana, D. N. (2012). Occupational health and food safety risks associated with traditional slaughter practices of goats in Gauteng, South Africa. University of Pretoria
Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13.
DOI 10.1016/j.biortech.2014.01.051
Ramasamy, G., Goodman, A. H., Lahuri, H. M., Md Shah, S. S., & Sabil, K. M. (2022). Process simulation of anaerobic digestion for methane production using aspen plus. IOP Conference Series: Materials Science and Engineering, 1257(1), 012002.
DOI 10.1088/1757-899x/1257/1/012002
Red Meat Association. (2021). Red Meat Association Annual-Report-2021
Roberts, H., de Jager, L., & Blight, G. (2009). Waste-handling practices at red meat abattoirs in South Africa. Waste Management and Research, 27(1), 25–30.
DOI 10.1177/0734242X07085754
Sawyerr, N., Trois, C., & Workneh, T. (2019). Identification and characterisation of potential feedstock for biogas production in South Africa. Journal of Ecological Engineering, 20(6), 103–116.
DOI 10.12911/22998993/108652
Sekoai, P. T., Yoro, K. O., & Daramola, M. O. (2018). Effect of nitrogen gas sparging on dark fermentative biohydrogen production using suspended and immobilised cells of anaerobic mixed bacteria from potato waste. Biofuels, 9(5), 595–604.
DOI 10.1080/17597269.2018.1432275
Serrano, R. P., & Knud, S. : (2011). Biogas Process Simulation using Aspen Plus. Syddansk Universitet
Singh, G., Shamsuddin, M. R., Aqsha, & Lim, S. W. (2018). Characterisation of Chicken Manure from Manjung Region. IOP Conference Series: Materials Science and Engineering, 458(1).
DOI 10.1088/1757-899X/458/1/012084
Sittijunda, S., Baka, S., Jariyaboon, R., Reungsang, A., Imai, T., & Kongjan, P. (2022). Integration of Dark Fermentation with Microbial Electrolysis Cells for Biohydrogen and Methane Production from Distillery Wastewater and Glycerol Waste Co-Digestion. Fermentation, 8(10).
DOI 10.3390/fermentation8100537
Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. (2017). Thermal treatment of waste from the meat industry in high scale rotary kiln. International Journal of Environmental Science and Technology, 14(6), 1157–1168.
DOI 10.1007/s13762-016-1223-9
Tchatchouang, C. D. K., Fri, J., De Santi, M., Brandi, G., Schiavano, G. F., Amagliani, G., & Ateba, C. N. (2020). Listeriosis outbreak in south africa: A comparative analysis with previously reported cases worldwide. In Microorganisms (Vol. 8, Issue 1). MDPI AG.
DOI 10.3390/microorganisms8010135
Thomas, J., Govender, N., McCarthy, K. M., Erasmus, L. K., Doyle, T. J., Allam, M., Ismail, A., Ramalwa, N., Sekwadi, P., Ntshoe, G., Shonhiwa, A., Essel, V., Tau, N., Smouse, S., Ngomane, H. M., Disenyeng, B., Page, N. A., Govender, N. P., Duse, A. G., … Blumberg, L. H. (2020). Outbreak of Listeriosis in South Africa Associated with Processed Meat. New England Journal of Medicine, 382(7), 632–643.
DOI 10.1056/nejmoa1907462
Tolera, S. T., & Alemu, F. K. (2020). Potential of Abattoir Waste for Bioenergy as Sustainable Management, Eastern Ethiopia, 2019. Journal of Energy, 2020, 1–9.
DOI 10.1155/2020/6761328
Water Research Commission. (2017). Water and wastewater management in the red meat abattoir industry
Western Cape Government. (2016). The mini guide to the Management of Abattoir Waste
Xiong, X., Gong, Shuying, Zhu, Pengfei, & Li, N. (2024). Preparation Processes and Influencing Factors of Dark Fermentative Biohydrogen Production from Animal Manure. https://ssrn.com/abstract=4840340
Erica Guerreiro, Hubert Baier, Kai Münnich and André Felipe Simões
Published 12 Nov 2025Ana Ramos
Published 12 Nov 2025Filippo Marchelli, Roberta Ferrentino, Giulia Ischia, Marco Calvi, Gianni Andreottola and Luca Fiori
Published 12 Nov 2025| Title | Support | Price |
|---|