an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

CONSIDERATIONS ON WASTE CHARACTERIZATION AND THE PRODUCTION OF ENERGY: HOW USEFUL CAN WASTE BE?

  • Ana Ramos - LAETA-INEGI, Associate Laboratory of Energy, Transports and Aerospace Institute of Science and Innovation in Mechanical and Industrial Engineering, Portugal

Access restricted to subscribed members only

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Abstract

The proposed work reports a compilation of municipal solid waste composition in several geographies, discussing the impacts and repercussions of different waste classification nomenclature and related definitions. In addition, different scenarios are evaluated using the average waste composition in each location to further describe the possibility of covering the energy demand in those places, with energy produced from waste. For that, the thermal conversion efficiency of each Waste-to-Energy (WtE) procedure (combustion, incineration, hydrothermal liquefaction, pyrolysis, gasification, and plasma gasification) was used, so that a comparison of performances is put forward, to potentially aid in policy- and/or decision-making processes. Hydrothermal liquefaction presented higher efficiencies, followed by gasification-based techniques. Incineration, combustion and pyrolysis show a declining performance. In terms of waste production, OECD countries exceeded the average waste production values as well as the energy demand per capita, while Europe and Central Asia depicted the lowest contribution of energy produced from the waste generated.

Keywords


Editorial History

  • Received: 13 Jul 2023
  • Revised: 29 Aug 2023
  • Accepted: 23 Sep 2023
  • Available online: 30 Sep 2023

References

Abd Kadir, S. A. S., Yin, C.-Y., Rosli Sulaiman, M., Chen, X., & El-Harbawi, M. (2013). Incineration of municipal solid waste in Malaysia: Salient issues, policies and waste-to-energy initiatives. Renewable and Sustainable Energy Reviews, 24, 181-186.
DOI 10.1016/j.rser.2013.03.041

Abdulredha, M., Kot, P., Al Khaddar, R., Jordan, D., & Abdulridha, A. (2020). Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq. Environment, Development and Sustainability, 22(2), 1431-1454.
DOI 10.1007/s10668-018-0256-2

Adeniran, A. E., Adelopo, A. O., Aina, A. T., Nubi, A. T., & Apena, O. O. (2019). Energy potential of solid waste generated at a tertiary institution: Estimations and challenges. Detritus, 7(7), 4-12.
DOI 10.31025/2611-4135/2019.13842

International Energy Agency, (2013). Electricity from biomass: from small to large scale (ExCo72). Retrieved from https://www.ieabioenergy.com/wp-content/uploads/2015/04/ExCo72-Electricity-fromBiomass-Summary-and-Conclusions-13.04.15.pdf

Agency, I. E. (2022). World Energy Outlook. Retrieved from https://www.iea.org/reports/world-energy-outlook-2022

Agustiono, K. T., Lo, W., Singh, D., Othman, M. H. D., Avtar, R., Hwang, G. H., Shirazian, S. (2021). A societal transition of MSW management in Xiamen (China) toward a circular economy through integrated waste recycling and technological digitization. Environmental pollution, 277, 116741.
DOI 10.1016/j.envpol.2021.116741

AL-KHATEEB, H. M. M. (2021). INCINERATION ALTERNATIVE FOR MUNICIPAL SOLID WASTE DISPOSAL OF NAJAF CITY, IRAQ. Journal of Engineering Science & Technology, 16(1), 612-620

Azam, M., Jahromy, S. S., Raza, W., Raza, N., Lee, S. S., Kim, K.-H., & Winter, F. (2020). Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environment International, 134, 105291.
DOI 10.1016/j.envint.2019.105291

Bank, T. W. (2018). Electric power consumption (kWh per capita). Retrieved from https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC

Baran, J. (2018). Municipal waste management in rural areas in Poland. Paper presented at the 19th International Scientific Conference Economic Science for Rural Development

Bashir, M., Tao, G., Abu Amr, S., & Tan, K. (2018). Public concerns and behaviors towards solid waste minimization using composting in Kampar district, Malaysia. Global NEST Journal, 20(2), 316-323

Bergeron, F. C. (2017). Analytical method of waste allocation in waste management systems: Concept, method and case study. Environmental Impact Assessment Review, 62, 35-48.
DOI 10.1016/j.eiar.2016.10.001

Bois von Kursk, O., Muttitt, G., Picciarello, A., Dufour, L., Van de Graaf, T., Goldthau, A., Hans, F. (2022). Navigating Energy Transitions: Mapping the road to 1.5° C. Retrieved from http://hdl.handle.net/1854/LU-8770882

Bolukbas, A., & Akinci, G. (2018). Solid waste composition and the properties of biodegradable fractions in Izmir City, Turkey: an investigation on the influencing factors. Journal of Environmental Health Science and Engineering, 16(2), 299-311.
DOI 10.1007/s40201-018-0318-2

Boulos, M. I., Fauchais, P., & Pfender, E. (2013). Thermal plasmas: fundamentals and applications: Springer Science & Business Media

Bueno, G., Latasa, I., & Lozano, P. J. (2015). Comparative LCA of two approaches with different emphasis on energy or material recovery for a municipal solid waste management system in Gipuzkoa. Renewable and Sustainable Energy Reviews, 51, 449-459.
DOI 10.1016/j.rser.2015.06.021

Chand Malav, L., Yadav, K. K., Gupta, N., Kumar, S., Sharma, G. K., Krishnan, S., Bach, Q.-V. (2020). A review on municipal solid waste as a renewable source for waste-to-energy project in India: current practices, challenges, and future opportunities. Journal of Cleaner Production, 123227.
DOI 10.1016/j.jclepro.2020.123227

Chen, Y.-C. (2018). Effects of urbanization on municipal solid waste composition. Waste Management, 79, 828-836.
DOI 10.1016/j.wasman.2018.04.017

Ciuta, S., Apostol, T., & Rusu, V. (2015). Urban and Rural MSW Stream Characterization for Separate Collection Improvement. Sustainability, 7(1), 916-931.
DOI 10.3390/su7010916

A new Circular Economy Action Plan: For a cleaner and more competitive Europe, Communication, COM//98 final C.F.R. (2020)

Commission, U. N. B. (1987). Report of the World Commission on Environment and Development: Our common future. Retrieved from http://www.un-documents.net/our-common-future.pdf

D’Alessandro, B., D’Amico, M., Desideri, U., & Fantozzi, F. (2013). The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration. Applied Energy, 101, 423-431.
DOI 10.1016/j.apenergy.2012.04.036

Dehghanifard, E., & Dehghani, M. H. (2018). Evaluation and analysis of municipal solid wastes in Tehran, Iran. MethodsX, 5, 312-321.
DOI 10.1016/j.mex.2018.04.003

Development, O. f. E. C.-o. a. (2016). Municipal Waste, Generation and Treatment. Retrieved from https://stats.oecd.org/Index.aspx?DataSetCode=MUNW

Diaz-Farina, E., Díaz-Hernández, J. J., & Padrón-Fumero, N. (2020). The contribution of tourism to municipal solid waste generation: A mixed demand-supply approach on the island of Tenerife. Waste Management, 102, 587-597.
DOI 10.1016/j.wasman.2019.11.023

Ding, Y., Zhao, J., Liu, J.-W., Zhou, J., Cheng, L., Zhao, J., Li, X. (2021). A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. Journal of Cleaner Production, 293, 126144.
DOI 10.1016/j.jclepro.2021.126144

Dixit, A., Singh, D., & Shukla, S. K. (2022). Changing scenario of municipal solid waste management in Kanpur city, India. Journal of Material Cycles and Waste Management, 24(5), 1648-1662.
DOI 10.1007/s10163-022-01427-4

Drudi, K. C. R., Drudi, R., Martins, G., Antonio, G. C., & Leite, J. T. C. (2019). Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition. Waste Management, 87, 782-790.
DOI 10.1016/j.wasman.2019.03.012

Du, Y., Ju, T., Meng, Y., Lan, T., Han, S., & Jiang, J. (2021). A review on municipal solid waste pyrolysis of different composition for gas production. Fuel Processing Technology, 224, 107026.
DOI 10.1016/j.fuproc.2021.107026

Edjabou, M. E., Martín-Fernández, J. A., Scheutz, C., & Astrup, T. F. (2017). Statistical analysis of solid waste composition data: Arithmetic mean, standard deviation and correlation coefficients. Waste Management, 69, 13-23.
DOI 10.1016/j.wasman.2017.08.036

Elgarahy, A. M., Hammad, A., El-Sherif, D. M., Abouzid, M., Gaballah, M. S., & Elwakeel, K. Z. (2021). Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis: A conceptual review. Journal of Environmental Chemical Engineering, 9(6), 106503.
DOI 10.1016/j.jece.2021.106503

Engineering, I. I. o. S. a. P. (2011). Study Regarding the MSW Composition and Generation rate Determination at National Level, in Urban and Rural area, in Representative Regions for a Period of One Year. Retrieved from http://www.ispe.ro/en/index.html

Esmaeilizadeh, S., Shaghaghi, A., & Taghipour, H. (2020). Key informants’ perspectives on the challenges of municipal solid waste management in Iran: a mixed method study. Journal of Material Cycles and Waste Management, 22, 1284-1298.
DOI 10.1007/s10163-020-01005-6

Evangelisti, S., Tagliaferri, C., Clift, R., Lettieri, P., Taylor, R., & Chapman, C. (2015). Integrated gasification and plasma cleaning for waste treatment: A life cycle perspective. Waste Management, 43, 485-496.
DOI 10.1016/j.wasman.2015.05.037

Fernández-Nava, Y., del Río, J., Rodríguez-Iglesias, J., Castrillón, L., & Marañón, E. (2014). Life cycle assessment of different municipal solid waste management options: a case study of Asturias (Spain). Journal of Cleaner Production, 81, 178-189.
DOI 10.1016/j.jclepro.2014.06.008

Foster, W., Azimov, U., Gauthier-Maradei, P., Molano, L. C., Combrinck, M., Munoz, J., Patino, L. (2021). Waste-to-energy conversion technologies in the UK: Processes and barriers – A review. Renewable and Sustainable Energy Reviews, 135, 110226.
DOI 10.1016/j.rser.2020.110226

Ghumra, D. P., Rathi, O., Mule, T. A., Khadye, V. S., Chavan, A., Barba, F. C., Thorat, B. N. (2022). Technologies for valorization of municipal solid wastes. Biofuels, Bioproducts and Biorefining, 16(3), 877-890.
DOI 10.1002/bbb.2340

Gielen, D., Gorini, R., Wagner, N., Leme, R., Gutierrez, L., Prakash, G., Vale, G. (2019). Global energy transformation: a roadmap to 2050. Retrieved from https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition

Grammelis, P. (2010). Solid biofuels for energy. London: Springer

Group, T. W. B. (2017). The World by Region. Retrieved from https://datatopics.worldbank.org/sdgatlas/archive/2017/the-world-by-region.html

He, H., Wu, T., Wang, X., Qiu, Z., & Lan, J. (2021). Study on compressibility and settlement of a landfill with aged municipal solid waste: a case study in Taizhou. Sustainability, 13(9), 4831.
DOI 10.3390/su13094831

Hogg, D., & Consulting, E. R. (2016). Costs for municipal waste management in the EU final report to European Commission. Retrieved from Brussels, Belgium: http://ec.europa.eu/environment/waste/studies/pdf/eucostwaste.pdf

Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: a global review of solid waste management. Washington

Huang, H., Singh, V., & Qureshi, N. (2015). Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnology for Biofuels, 8(1), 147.
DOI 10.1186/s13068-015-0332-x

Hujare, R., & Telsang, K. (2020, 2020). Solid Waste Generation Data Variability in India—An Unnoticed Hurdle. Paper presented at the Recent Developments in Waste Management, Singapore

Ibikunle, R. A., Titiladunayo, I. F., Lukman, A. F., Dahunsi, S. O., & Akeju, E. A. (2020). Municipal solid waste sampling, quantification and seasonal characterization for power evaluation: Energy potential and statistical modelling. Fuel, 277, 118122.
DOI 10.1016/j.fuel.2020.118122

Indrawati, D., & Purwaningrum, P. (2018). Identification and analysis the illegal dumping spot of solid waste at Ciliwung segment 5 riverbanks. Paper presented at the IOP Conference Series: Earth and Environmental Science

Iqbal, M. R., Piumali, A. B. K. T., Priyankara, N. H., Alagiyawanna, A. M. N., Kurukulasuriya, L. C., & Kawamoto, K. (2022). Characterization of Physicochemical and Mechanical Properties of Dumped Municipal Solid Waste in Sri Lanka as Affected by the Climate Zone and Dumping Age. Sustainability, 14(8), 4706.
DOI 10.3390/su14084706

Jaafar, I., Azmina Ibrahim, T., Awanis Ahmad, N., Abdul Kadir, A., & Razali Md Tomari, M. (2018). Waste generation and characteristization: Case study of Seberang Takir, Kuala Nerus, Terengganu, Malaysia. Paper presented at the Journal of Physics: Conference Series.
DOI 10.1088/1742-6596/1049/1/012029

Janna, H., Abbas, M. D., Al-Khuzaie, M. M., & Al-Ansari, N. (2021). Energy Content Estimation of Municipal Solid Waste by Physical Composition in Al-Diwaniyah City, Iraq. Journal of Ecological Engineering, 22(7), 11-19.
DOI 10.12911/22998993/137443

Jung, S., Shetti, N. P., Reddy, K. R., Nadagouda, M. N., Park, Y.-K., Aminabhavi, T. M., & Kwon, E. E. (2021). Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks – A review. Energy Conversion and Management, 236, 114038.
DOI 10.1016/j.enconman.2021.114038

Kawai, K., & Tasaki, T. (2016). Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management, 18(1), 1-13.
DOI 10.1007/s10163-015-0355-1

Kaza, S., Yao, L., Bhada-Tata, P., & Woerden, F. V. (2018). What a waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington

Kumar, K. N., & Goel, S. (2009). Characterization of Municipal Solid Waste (MSW) and a proposed management plan for Kharagpur, West Bengal, India. Resources Conservation and Recycling, 53(3), 166-174.
DOI 10.1016/j.resconrec.2008.11.004

Kumar, M., Oyedun, A. O., & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742-1770

Li, J. (2011). Solid waste disposal and reuse. In: Beijing: Science Press

Lombardi, L., Carnevale, E., & Corti, A. (2012). Analysis of energy recovery potential using innovative technologies of waste gasification. Waste Management, 32(4), 640-652.
DOI 10.1016/j.wasman.2011.07.019

Lozano Lazo, D. P., Bojanic Helbingen, C., & Gasparatos, A. (2023). Household waste generation, composition and determining factors in rapidly urbanizing developing cities: case study of Santa Cruz de la Sierra, Bolivia. Journal of Material Cycles and Waste Management, 25(1), 565-581.
DOI 10.1007/s10163-022-01535-1

Marçal, A., Mateus, I., & Silva, F. (2015). Resíduos Urbanos Relatório Anual 2014. Retrieved from Amadora: http://www.google.pt/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0ahUKEwj0-bbVzJHWAhWG2BoKHebdAqUQFggsMAE&url=http%3A%2F%2Fwww.dgeg.pt%2Fwwwbase%2Fwwwinclude%2Fficheiro.aspx%3Faccess%3D1%26id%3D15901&usg=AFQjCNFA3CHyj91dmJyj9C6VD2uE3qVpBA

Mavrotas, G., Gakis, N., Skoulaxinou, S., Katsouros, V., & Georgopoulou, E. (2015). Municipal solid waste management and energy production: Consideration of external cost through multi-objective optimization and its effect on waste-to-energy solutions. Renewable and Sustainable Energy Reviews, 51, 1205-1222.
DOI 10.1016/j.rser.2015.07.029

Transforming our world: The 2030 agenda for sustainable development, A/RES/70/1 C.F.R. (2016)

United Nations, (2021). Climate Action. Retrieved from https://www.un.org/en/climatechange/cop26

Naveen, B. P. (2018). Measurement of static and dynamic properties of municipal solid waste at Mavallipura landfill site, India. International Journal of Geo-Engineering, 9(1), 22.
DOI 10.1186/s40703-018-0088-9

Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2017). Biomass in the generation of electricity in Portugal: A review. Renewable and Sustainable Energy Reviews, 71, 373-378.
DOI 10.1016/j.rser.2016.12.067

Ofori-Boateng, C., Lee, K. T., & Mensah, M. (2013). The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option. Fuel Processing Technology, 110, 94-102.
DOI 10.1016/j.fuproc.2012.11.008

Olukanni, D. O., Aipoh, A. O., & Kalabo, I. H. (2018). Recycling and Reuse Technology: Waste to Wealth Initiative in a Private Tertiary Institution, Nigeria. Recycling, 3(3), 44.
DOI 10.3390/recycling3030044

Osra, F. A., Ozcan, H. K., Alzahrani, J. S., & Alsoufi, M. S. (2021). Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah. 13(3), 1462.
DOI 10.3390/su13031462

Ouda, O. K. M., Raza, S. A., Nizami, A. S., Rehan, M., Al-Waked, R., & Korres, N. E. (2016). Waste to energy potential: A case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328-340.
DOI 10.1016/j.rser.2016.04.005

Outapa, P., & Roi-et, V. N. (2018). Evaluation of Greenhouse Gas Emissions from Municipal Solid Waste (MSW) Management: Case Study of Lampang Municipality, Thailand. Applied Environmental Research, 40(1), 46-56.
DOI 10.35762/AER.2018.40.1.5

Palanivel, T. M., & Sulaiman, H. (2014). Generation and composition of municipal solid waste (MSW) in Muscat, Sultanate of Oman. APCBEE procedia, 10, 96-102.
DOI 10.1016/j.apcbee.2014.10.024

Parfitt, J., & Bridgwater, E. (2008). Municipal Waste Composition: A Review of Municipal Waste Component Analyses. Future Resources, 119

Park, S., & Lah, T. (2018). Same material different recycling standards: comparing the municipal solid waste standards of the European Union, South Korea and the USA. International Journal of Environment and Waste Management, 21(1), 80-93.
DOI 10.1504/IJEWM.2018.091326

Parkes, O., Lettieri, P., & Bogle, I. D. L. (2015). Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, 40, 157-166.
DOI 10.1016/j.wasman.2015.03.017

Paul, K., Chattopadhyay, S., Dutta, A., Krishna, A. P., & Ray, S. (2019). A comprehensive optimization model for integrated solid waste management system: A case study. Environmental Engineering Research, 24(2), 220-237.
DOI 10.4491/eer.2018.132

Pirotta, F. J. C., Ferreira, E. C., & Bernardo, C. A. (2013). Energy recovery and impact on land use of Maltese municipal solid waste incineration. Energy, 49, 1-11.
DOI 10.1016/j.energy.2012.10.049

Rajaeifar, M. A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., & Rafiee, S. (2015). Comparative life cycle assessment of different municipal solid waste management scenarios in Iran. Renewable and Sustainable Energy Reviews, 51, 886-898.
DOI 10.1016/j.rser.2015.06.037

Ramachandra, T. V., Bharath, H. A., Kulkarni, G., & Han, S. S. (2018). Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renewable and Sustainable Energy Reviews, 82, 1122-1136.
DOI 10.1016/j.rser.2017.09.085

Ramos, A., Afonso Teixeira, C., & Rouboa, A. (2018). Environmental Analysis of Waste-to-Energy—A Portuguese Case Study. Energies, 11(3), 548.
DOI 10.3390/en11030548

Ramos, A., Monteiro, E., & Rouboa, A. (2019). Numerical approaches and comprehensive models for gasification process: A review. Renewable and Sustainable Energy Reviews, 110, 188-206.
DOI 10.1016/j.rser.2019.04.048

Ramos, A., & Rouboa, A. (2020). Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, 85, 106469.
DOI 10.1016/j.eiar.2020.106469

Ramos, A., Teixeira, C. A., & Rouboa, A. (2019). Environmental Assessment of Municipal Solid Waste by Two-Stage Plasma Gasification. Energies, 12(1), 16.
DOI 10.3390/en12010137

Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46-56.
DOI 10.1016/j.energy.2017.10.109

Rompaey, N. H. C. V., Metreau, E., & Eapen, S. G. (2022). New World Bank country classifications by income level: 2022-2023. Retrieved from https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2022-2023

Sebastian, R. M., Kumar, D., & Alappat, B. J. (2019). A technique to quantify incinerability of municipal solid waste. Resources Conservation and Recycling, 140, 286-296.
DOI 10.1016/j.resconrec.2018.09.022

Singh, V., & Uchimura, T. (2022). Influence of composition analysis on unit weight of synthetic municipal solid waste. GEOMATE Journal, 23(100), 134-141

Sorum, L., Gronli, M. G., & Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80(9), 1217-1227.
DOI 10.1016/S0016-2361(00)00218-0

Sun, L., Liu, W., Fujii, M., Li, Z., Ren, J., & Dou, Y. (2020). Chapter 1 - An overview of waste-to-energy: feedstocks, technologies and implementations. In J. Ren (Ed.), Waste-to-Energy (pp. 1-22): Academic Press

Tsydenova, N., Vázquez Morillas, A., & Cruz Salas, A. A. (2018). Sustainability Assessment of Waste Management System for Mexico City (Mexico)—Based on Analytic Hierarchy Process. Recycling, 3(3), 45.
DOI 10.3390/recycling3030045

Ulgiati, S., Ascione, M., Bargigli, S., Cherubini, F., Franzese, P. P., Raugei, M., Zucaro, A. (2011). Material, energy and environmental performance of technological and social systems under a Life Cycle Assessment perspective. Ecological Modelling, 222(1), 176-189.
DOI 10.1016/j.ecolmodel.2010.09.005

Ullah, S., Bibi, S., Ali, S., Noman, M., Rukh, G., Nafees, M., Hamidova, E. (2022). Analysis of municipal solid waste management in Afghanistan, current and future prospects: A case study of Kabul city. Appl. Ecol. Environ. Res., 20, 2485-2507.
DOI 10.15666/aeer/2003_24852507

University, A. (2013, February 6, 2013). Hydrothermal liquefaction: The most promising path to sustainable bio-oil production. ScienceDaily. Retrieved from www.sciencedaily.com/releases/2013/02/130206162229.htm

Vallejoa, F., Díaz-Roblesa, L., Cubillosa, F., & Perez, A. (2020). Valorization of municipal solid waste using hydrothermal carbonization and gasification: A review. Chemical Engineering & Technology, 81.
DOI 10.3303/CET2081175

Viganò, F., Consonni, S., Grosso, M., & Rigamonti, L. (2010). Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste Management, 30(1), 145-153.
DOI 10.1016/j.wasman.2009.06.009

Wampler, T. P. (2006). Applied pyrolysis handbook: CRC press

Wang, D., He, J., Tang, Y.-T., & Higgitt, D. (2018). The EU Landfill Directive Drove the Transition of Sustainable Municipal Solid Waste Management in Nottingham City, UK. Paper presented at the 7th Synposium on Energy from Biomass Waste, Venice, Italy

Wang, J. B., Cheng, G., You, Y. L., Xiao, B., Liu, S. M., He, P. W., Zhang, G. J. (2012). Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. International Journal of Hydrogen Energy, 37(8), 6503-6510.
DOI 10.1016/j.ijhydene.2012.01.070

Xiao, G., Ni, M. J., Chi, Y., Jin, B. S., Xiao, R., Zhong, Z. P., & Huang, Y. J. (2009). Gasification characteristics of MSW and an ANN prediction model. Waste Management, 29(1), 240-244.
DOI 10.1016/j.wasman.2008.02.022

Zhang, B., Wu, J., Deng, Z., Yang, C., Cui, C., & Ding, Y. (2017). A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae. Trends in Renewable Energy, 3(1), 76-85.
DOI 10.17737/tre.2017.3.1.0013

Zhang, Q. L., Dor, L., Fenigshtein, D., Yang, W. H., & Blasiak, W. (2012). Gasification of municipal solid waste in the Plasma Gasification Melting process. Applied Energy, 90(1), 106-112.
DOI 10.1016/j.apenergy.2011.01.041

Zhou, C., Ma, S., Yu, X., Chen, Z., Liu, J., & Yan, L. (2022). A comparison study of bottom‐up and top‐down methods for analyzing the physical composition of municipal solid waste. Journal of Industrial Ecology, 26(1), 240-251.
DOI 10.1111/jiec.13128