an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

IMPROVEMENT OF THE METHANE GENERATION POTENTIAL OF THE ANAEROBIC DIGESTION SOLID RESIDUE BY IMPLEMENTING A BIOLOGICAL PRETREATMENT WITH THE BIOMYCETE I. LACTEUS AT VARIOUS CONDITIONS

  • Kateřina Chamrádová - Institute of Environmental Technology, VSB-Technical University of Ostrava, Czech Republic
  • Panagiotis Basinas - Institute of Environmental Technology, VSB-Technical University of Ostrava, Czech Republic
  • Zuzana Rybková - Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
  • Kateřina Malachová - Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

Biological pretreatment of different digestates with Irpex lacteus was employed to investigate the potential of the fungal strain to exploit any digestible organic matter in the spent anaerobic digestion effluent in methane recovery. In all cases, pretreatment of sludge with the non-selective I. lacteus promoted methane generation. Incubation of I. lacteus in digestate for 20 days at 28 °C increased the residual methane generation potential of the sludge by 1.67-fold. Prolonging incubation time to 30 days led to an increment in methane yields (1.24-fold), however, the increase was lower than that accomplished at a shorter pretreatment period (20 days) due to a substantial loss of fermentable organics, especially cellulose. Regardless the digestate type, inoculation with I. lacteus enhanced the digestibility of sludge by at least 1.6-fold. The degree of improvement was depended on the amount of lipids and proteins supplied by the fungus when the modified sludge contained a small carbohydrate proportion and on the available for digestion cellulose when the pretreated digestate was rich in carbohydrates.

Keywords


Editorial History

  • Received: 11 Jun 2025
  • Accepted: 21 Jul 2025
  • Available online: 09 Sep 2025

References

Abraham, A., Mathew, A.K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Pandey, A., Park, J.H., Sang, B.-I., 2020. Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresour. Technol. 301, 122725.
DOI 10.1016/j.biortech.2019.122725

Adamse, P., Van der Fels-Klerx, H.J., De Jong, J., 2017. Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results. Food Addit. Contam. A. 34 (8), 1298-1311.
DOI 10.1080/19440049.2017.1300686

Albornoz, S., Wyman, V., Palma, C., Carvajal, A., 2018. Understanding of the contribution of the fungal treatment conditions in a wheat straw biorefinery that produces enzymes and biogas. Biochem. Eng. J. 150, 140-147.
DOI 10.1016/j. bej.2018.09.011

Basinas, P., Chamrádová, K., Rusín, J., Kaldis, S.P., 2024. Anaerobic digestion performance and kinetics of biomass pretreated with various fungal strains utilizing exponential and sigmoidal equation models. Renew. Energy 235, 121390,
DOI 10.1016/j.renene.2024.121390

Basinas, P., Chamrádová, K., Rybková, Z., Rusín, J., Malachová, K., 2025. Biological pretreatment of anaerobic digestion solid by-product with white rot fungi: Assessment of digestate delignification and investigation of process parameters improving the biodegradation performance of sludge. Chem. Eng. J. 512, 162292.
DOI 10.1016/j.cej.2025.162292

Basinas, P., Rusín, J., Chamrádová, K., Malachová, K., Rybková, Z., Novotný, Č., 2022. Fungal pretreatment parameters for improving methane generation from anaerobic digestion of corn silage. Bioresour. Technol. 345, 126526.
DOI 10.1016/j.biortech.2021.126526

Brémond, U., Bertrandias, A., Loisel, D., Jimenez, J., Steyer, J.-P., Bernet, N., Carrere, H., 2020. Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants. Renew. Energy 149, 641-651.
DOI 10.1016/j.renene.2019.12.062

Cai, Y., Zheng, Z., Wang, X., 2021. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion. J. Hazard. Mater. 403, 123938.
DOI 10.1016/j.jhazmat.2020.123938

Chen, Y., Cheng, J.J., Creamer, K.S., 2008. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99, 4044-4064.
DOI 10.1016/j.biortech.2007.01.057

Fang, W., Zhang, P.Y., Zhang, X.D., Zhu, X.F., van Lier, J.B., Spanjers, H., 2018. White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: Efficiency and mechanisms. Energy 162, 534-541.
DOI 10.1016/j.energy.2018.08.082

Fang, W., Zhang, X., Zhang, P., Carol Morera, X., van Lier, J.B., Spanjers, H., 2020. Evaluation of white rot fungi pretreatment of mushroom residues for volatile fatty acid production by anaerobic fermentation: Feedstock applicability and fungal function. Bioresour. Technol. 297, 122447.
DOI 10.1016/j.biortech.2019.122447

García-Torreiro, M., López-Abelairas, M., Lu-Chau, T.A., Lema, J.M., 2016. Fungal pretreatment of agricultural residues for bioethanol production. Ind. Crops Prod. 89, 486-492.
DOI 10.1016/j.indcrop.2016.05.036

Götze, H., Austen, D., Drescher-Hartung, S., Wilharm, E., 2022. Enhanced biomethane production from fibre-rich digestate by in-process produced fungal biomass and enzymes. Bioresour. Technol. Rep. 18, 101105.
DOI 10.1016/j.biteb.2022.101105

Guilayn, F, Rouez, M., Crest, M., Patureau, D., Jimenez, J., 2020. Valorization of digestates from urban or centralized biogas plants: a critical review. Rev. Environ. Sci. Biotechnol. 19, 419-462.
DOI 10.1007/s11157-020-09531-3

Hosseini Koupaie, E., Azizi, A., Bazyar Lakeh, A.A., Hafez, H., Elbeshbishy, E., 2019. Comparison of liquid and dewatered digestate as inoculum for anaerobic digestion of organic solid wastes. Waste Manage. 87, 228-236.
DOI 10.1016/j.wasman.2019.02.014

Lindner, J., Zielonka, S., Oechsner, H., Lemmer, A., 2015. Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresour. Technol. 178, 194-200.
DOI 10.1016/j.biortech.2014.09.117

López, M.J., Suárez-Estrella, F., Vargas-García, M.C., López-González, J.A., Verstichel, S., Debeer, L., Wierinck, I., Moreno, J., 2013. Biodelignification of agricultural and forest wastes: effect on anaerobic digestion. Biomass Bioenergy 58, 343-349.
DOI 10.1016/j.biombioe.2013.10.021

Menardo, S., Balsari, P., Dinuccio, E., Gioelli, F., 2011a. Thermal pretreatment of solid fraction from mechanically-separated raw and digested slurry to increase methane yield. Bioresour. Technol. 102, 2026-2032.
DOI 10.1016/j.biortech.2010.09.067

Menardo, S., Gioelli, F., Balsari, P., 2011b. The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding. Bioresour. Technol. 102 (3), 2348-2351.
DOI 10.1016/j.biortech.2010.10.094

Musatti, A., Ficara, E., Mapelli, C., Sambusiti, C., Rollini, M., 2017. Use of solid digestate for lignocellulolytic enzymes production through submerged fungal fermentation. J. Environ. Manage. 199, 1-6.
DOI 10.1016/j.jenvman.2017.05.022

Mustafa, A.M., Poulsen, T.G., Sheng, K., 2016. Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl. Energy 180, 661-671,
DOI 10.1016/j.apenergy.2016.07.135

Mustafa, A.M., Poulsen, T.G., Xia, Y., Sheng, K., 2017. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion. Bioresour. Technol. 224, 174-182.
DOI 10.1016/j.biortech.2016.11.028

Rodriguez Correa, C., Bernardo, M., Ribeiro, R.P.P.L., Esteves, I.A.A.C., Kruse, A., 2017. Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. J. Anal. Appl. Pyrol. 124, 461-474. 10.1016/j.jaap.2017.02.014

Rouches, E., Zhou, S., Steyer, J.P., Carrere, H., 2016. White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: Impact of glucose supplementation. Process Biochem. 51, 1784-1792.
DOI 10.1016/j.procbio.2016.02.003

Ruile, S., Schmitz, S., Monch-Tegeder, M., Oechsner, H., 2015. Degradation efficiency of agricultural biogas plants - a full-scale study. Bioresour. Technol. 178, 341-349.
DOI 10.1016/j.biortech.2014.10.053

Sambusiti, C., Monlau, F., Ficara, E., Musatti, A., Rollini, M., Barakat, A., Malpei, F., 2015. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 137, 359-365.
DOI 10.1016/j.fuproc.2015.04.028

Sun, F.-h., Li, J., Yuan, Y.-x., Yan, Z.-y., Liu, X.-f., 2011. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. Int. Biodeterioration Biodegrad. 65 (7), 931-938.
DOI 10.1016/j.ibiod.2011.07.001

Swain, P.S., Rao, S.B.N., Rajendran, D., Dominic, G., Selvaraju, S., 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim. Nutr. 2, 134-141.
DOI 10.1016/j.aninu.2016.06.003

Tišma, M., Planinič, M., Bucič-Kojič, A., Panjičko, M., Zupančič, G.D., Zelič, B., 2018. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 253, 220-226.
DOI 10.1016/j.biortech.2018.01.037

Uludag-Demirer, S., Demirer, G.N., 2022. Post-anaerobic treatability and residual biogas potential of digestate. Biomass Conv. Bioref. 12, 1695-1702.
DOI 10.1007/s13399-021-01290-7

Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597.
DOI 10.3168/jds.S0022-0302(91)78551-2

Vasco-Correa, J., Ge, X., Li, Y., 2016. Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour. Technol. 203, 118-123.
DOI 10.1016/j.biortech.2015.12.018

Wan, C., Li, Y., 2010. Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme Microb. Technol. 47, 31-36.
DOI 10.1016/j.enzmictec.2010.04.001

Wan, C., Li, Y., 2011. Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour. Technol. 102 (16), 7507-7512.
DOI 10.1016/j.biortech.2011.05.026

Xu, H., Li, Y., Hua, D., Zhao, Y., Mu, H., Chen, H., Chen, G., 2020. Enhancing the anaerobic digestion of corn stover by chemical pretreatment with the black liquor from the paper industry. Bioresour. Technol. 306, 123090.
DOI 10.1016/j.biortech.2020.123090

Zanellati, A., Spina, F., Poli, A., Rollé, L., Varese, G.C., 2021. Fungal pretreatment of non-sterile maize silage and solid digestate with a Cephalotrichum stemonitis strain selected from agricultural biogas plants to enhance anaerobic digestion. Biomass Bioenergy 144, 105934.
DOI 10.1016/j.biombioe.2020.105934

Zanellati, A., Spina, F., Rollé, L., Varese, G.C., Dinuccio, E., 2020. Fungal pretreatments on non-sterile solid digestate to enhance methane yield and the sustainability of anaerobic digestion. Sustainability 12, 8549-8564.
DOI 10.3390/su12208549

Zhong, Y., Liu, Z., Isaguirre, C., Liu, Y., Liao, W., 2016. Fungal fermentation on anaerobic digestate for lipid-based biofuel production. Biotechnol. Biofuels 9, 253-263.
DOI 10.1186/s13068-016-0654-3

Zhou, Q., Jiang, X., Li, X., Jiang, W., 2016. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Appl. Microbiol. Biotechnol. 100, 8179-8189.
DOI 10.1007/s00253-016-7612-7