an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ADVANCES IN UNDERSTANDING KINETIC MECHANISMS UNDERLYING WASTE GROUND TYRE RUBBER PYROLYSIS

  • Maxwell Katambwa Mwelwa - Department of Chemical Engineering, University of KwaZulu-Natal, South Africa
  • Samuel Ayodele Iwarere - Department of Chemical Engineering, University of Pretoria, South Africa
  • Ntandoyenkosi Malusi Mkhize - Department of Chemical Engineering, University of KwaZulu-Natal, South Africa

Access restricted to subscribed members only

Released under CC BY-NC-ND

Copyright: © 2023 Detritus Journals


Abstract

The depletion of natural resources and the need to reduce solid waste in urban areas have necessitated the incorporation of used materials such as waste ground tyre rubbers (WGTR), into manufacturing processes. As a result, techniques and recycling methods have been established to use tyres as feedstock for marketable products since tyres have a calorific value higher than coal and contain a significant amount of carbon black. Among several techniques, pyrolysis has emerged as the most appealing for treating WGTRs. This technique allows the recovery of valuable products like combustible gases, fuels and chemicals, and activated carbon. Studies have focused on understanding the mechanism underlying the WGTR pyrolysis through the establishment of mathematical models and reaction patterns to valorise WGTRs and efficiently produce marketable chemicals. This paper presents an overview of recent developments in understanding WGTR pyrolysis mechanisms. A general mechanism observed involves a first depolymerisation/condensation of the rubbers, then a degradation of the condensed products, and finally a devolatilisation of additives. Based on the limited information available on the chemicals' formation mechanism, it is assumed that limonene and isoprene are derived from natural rubber (NR), through a series of β-scission and depropagation reactions of polyisoprene and intramolecular cyclisation and scission of monomeric isoprene, respectively, with an equilibrium step of Diels-Alder reaction. The maximum yield of limonene and isoprene have been found to be 51% and 20.5% at temperature around 500°C respectively. The isoprene yield can be increased up to 37.57 % with the use of catalyst such as Calcium Oxide.

Keywords


Editorial History

  • Received: 15 Mar 2023
  • Revised: 26 Sep 2023
  • Accepted: 02 Oct 2023
  • Available online: 30 Sep 2023

References

Acevedo, B., & Barriocanal, C. (2014). Fuel-oils from co-pyrolysis of scrap tyres with coal and a bituminous waste. Influence of oven configuration. Fuel, 125, 155-163.
DOI 10.1016/j.fuel.2014.01.099

Acevedo, B., & Barriocanal, C. (2015). The influence of the pyrolysis conditions in a rotary oven on the characteristics of the products. Fuel processing technology, 131, 109-116.
DOI 10.1016/j.fuproc.2014.11.016

Alvarez, J., Lopez, G., Amutio, M., Mkhize, N., Danon, B., Van der Gryp, P., . . . Olazar, M. (2017). Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy, 128, 463-474.
DOI 10.1016/j.energy.2017.03.163

Antoniou, N., & Zabaniotou, A. (2013). Features of an efficient and environmentally attractive used tyres pyrolysis with energy and material recovery. Renewable and Sustainable Energy Reviews, 20, 539-558.
DOI 10.1016/j.rser.2012.12.005

Arabiourrutia, M., Lopez, G., Artetxe, M., Alvarez, J., Bilbao, J., & Olazar, M. (2020). Waste tyre valorization by catalytic pyrolysis–A review. Renewable and Sustainable Energy Reviews, 129, 109932

Arabiourrutia, M., Lopez, G., Elordi, G., Olazar, M., Aguado, R., & Bilbao, J. (2007). Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chemical Engineering Science, 62(18-20), 5271-5275.
DOI 10.1016/j.ces.2006.12.026

Association, E. A. M. (2019). The automobile industry pocket guide 2019–2020. Available online: ACEA_ Pocket_Guide_2019-2020. pdf (accessed on 22 July 2022)

Aylón, E., Callén, M., López, J., Mastral, A. M., Murillo, R., Navarro, M., & Stelmach, S. (2005). Assessment of tire devolatilization kinetics. Journal of Analytical and applied Pyrolysis, 74(1-2), 259-264.
DOI 10.1016/j.jaap.2004.09.006

Aylón, E., Fernández-Colino, A., Murillo, R., Navarro, M., García, T., & Mastral, A. (2010). Valorisation of waste tyre by pyrolysis in a moving bed reactor. Waste Management, 30(7), 1220-1224.
DOI 10.1016/j.wasman.2009.10.001

Bajus, M., & Olahová, N. (2011). THERMAL CONVERSION OF SCRAP TYRES. Petroleum & Coal, 53(2)

Betancur, M., Martínez, J. D., & Murillo, R. (2009). Production of activated carbon by waste tire thermochemical degradation with CO2. Journal of Hazardous Materials, 168(2-3), 882-887.
DOI 10.1016/j.jhazmat.2009.02.167

Boxiong, S., Chunfei, W., Binbin, G., & Rui, W. (2007). Pyrolysis of waste tyres with zeolite USY and ZSM-5 catalysts. Applied Catalysis B: Environmental, 73(1-2), 150-157.
DOI 10.1016/j.apcatb.2006.07.006

Carrasco, F. (1993). The evaluation of kinetic parameters from thermogravimetric data: comparison between established methods and the general analytical equation. Thermochimica Acta, 213, 115-134.
DOI 10.1016/0040-6031(93)80010-8

Chen, J., Chen, K., & Tong, L. (2001). On the pyrolysis kinetics of scrap automotive tires. Journal of Hazardous Materials, 84(1), 43-55.
DOI 10.1016/S0304-3894(01)00180-7

Chen, Q., Xu, F., Zong, P., Song, F., Wang, B., Tian, Y., . . . Qiao, Y. (2022). Influence of CaO on the thermal kinetics and formation mechanism of high value-added products during waste tire pyrolysis. Journal of Hazardous Materials, 436, 129220.
DOI 10.1016/j.jhazmat.2022.129220

Choi, G.-G., Oh, S.-J., & Kim, J.-S. (2016). Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil. Energy, 114, 457-464.
DOI 10.1016/j.energy.2016.08.020

Conesa, J., Font, R., & Marcilla, A. (1997). Mass spectrometry validation of a kinetic model for the thermal decomposition of tyre wastes. Journal of Analytical and applied Pyrolysis, 43(1), 83-96.
DOI 10.1016/S0165-2370(97)00057-0

Conesa, J. A., Martin-Gullon, I., Font, R., & Jauhiainen, J. (2004). Complete study of the pyrolysis and gasification of scrap tires in a pilot plant reactor. Environmental science & technology, 38(11), 3189-3194.
DOI 10.1021/es034608u

Criado, J., Malek, J., & Ortega, A. (1989). Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochimica Acta, 147(2), 377-385.
DOI 10.1016/0040-6031(89)85192-5

Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56-60.
DOI 10.1016/j.tca.2015.10.008

Danon, B., Mkhize, N., Van Der Gryp, P., & Görgens, J. (2015). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica Acta, 601, 45-53.
DOI 10.1016/j.tca.2014.12.003

Demirbas, A., Al-Sasi, B. O., & Nizami, A.-S. (2016). Conversion of waste tires to liquid products via sodium carbonate catalytic pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(16), 2487-2493.
DOI 10.1080/15567036.2015.1052598

Ding, K., Zhong, Z., Zhang, B., Song, Z., & Qian, X. (2015). Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry. Energy & Fuels, 29(5), 3181-3187.
DOI 10.1021/acs.energyfuels.5b00247

Drugkar, K., Rathod, W., Sharma, T., Sharma, A., Joshi, J., Pareek, V. K., . . . Diwekar, U. (2022). Advanced separation strategies for up-gradation of bio-oil into value-added chemicals: A comprehensive review. Separation and Purification Technology, 283, 120149.
DOI 10.1016/j.seppur.2021.120149

Farzad, S., Mandegari, M., & Görgens, J. F. (2021). A novel approach for valorization of waste tires into chemical and fuel (limonene and diesel) through pyrolysis: Process development and techno economic analysis. Fuel processing technology, 224, 107006.
DOI 10.1016/j.fuproc.2021.107006

Flynn, J. H. (1997). The ‘temperature integral’—its use and abuse. Thermochimica Acta, 300(1-2), 83-92.
DOI 10.1016/S0040-6031(97)00046-4

Flynn, J. H., & Wall, L. A. (1966). General treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards. Section A, Physics and chemistry, 70(6), 487.
DOI 10.6028/jres.070A.043

Gauthier-Maradei, P., Valderrama, Y. C., & Nabarlatz, D. (2019). Mathematical model of scrap tire rubber pyrolysis in a non-isothermal fixed bed reactor: Definition of a chemical mechanism and determination of kinetic parameters. Waste and Biomass Valorization, 10(3), 561-573.
DOI 10.1007/s12649-017-0079-7

Gollakota, A. R., Reddy, M., Subramanyam, M. D., & Kishore, N. (2016). A review on the upgradation techniques of pyrolysis oil. Renewable and Sustainable Energy Reviews, 58, 1543-1568.
DOI 10.1016/j.rser.2015.12.180

González, J. F., Encinar, J. M., Canito, J. L., & Rodrı́guez, J. J. (2001). Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. Journal of Analytical and applied Pyrolysis, 58, 667-683.
DOI 10.1016/S0165-2370(00)00201-1

Gotor, F. J., Criado, J. M., Malek, J., & Koga, N. (2000). Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. The Journal of Physical Chemistry A, 104(46), 10777-10782.
DOI 10.1021/jp0022205

Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and applied Pyrolysis, 129, 1-5.
DOI 10.1016/j.jaap.2017.12.016

Hita, I., Arabiourrutia, M., Olazar, M., Bilbao, J., Arandes, J. M., & Castaño, P. (2016). Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews, 56, 745-759.
DOI 10.1016/j.rser.2015.11.081

Isayev, A. I. (2005). Recycling of rubbers. In Science and technology of rubber (pp. 663-701): Elsevier

Ishola Felix, A., Ajayi Oluseyi, O., Oyawale, F., & Akinlabi, S. A. (2018). Sustainable End-of-Life Tyre (EOLT) Management for Developing Countries–A Review. Paper presented at the Proceedings of the International Conference on Industrial Engineering and Operations Management, Pretoria/Johannesburg, South Africa

Islam, M. R., Joardder, M. U. H., Kader, M., & Sarker, M. (2011). Valorization of solid tire wastes available in Bangladesh by thermal treatment. Paper presented at the Proceedings of the WasteSafe 2011 - 2nd International Conference on Solid Waste Management in the Developing Countries., WasteSafe / Khulna University of Engineering & Technology (KUET), Bangladesh, pp. 1-9

Iwarere, S. A., & Mkhize, N. M. (2019). PYROLYSIS OF VARIOUS TYRE TYPES: CHARACTERISTICS AND KINETIC STUDIES USING THERMOGRAVIMETRIC ANALYSIS. Detritus(2019-Volume), 0.
DOI 10.31025/2611-4135/2019.13870

Jahirul, M. I., Hossain, F. M., Rasul, M. G., & Chowdhury, A. A. (2021). A review on the thermochemical recycling of waste tyres to oil for automobile engine application. Energies, 14(13), 3837.
DOI 10.3390/en14133837

Januszewicz, K., Kazimierski, P., Kosakowski, W., & Lewandowski, W. M. (2020). Waste tyres pyrolysis for obtaining limonene. Materials, 13(6), 1359.
DOI 10.3390/ma13061359

Khawam, A., & Flanagan, D. R. (2005). Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. The Journal of Physical Chemistry B, 109(20), 10073-10080.
DOI 10.1021/jp050589u

Khawam, A., & Flanagan, D. R. (2006a). Basics and applications of solid-state kinetics: a pharmaceutical perspective. Journal of pharmaceutical sciences, 95(3), 472-498.
DOI 10.1002/jps.20559

Khawam, A., & Flanagan, D. R. (2006b). Solid-state kinetic models: basics and mathematical fundamentals. The Journal of Physical Chemistry B, 110(35), 17315-17328.
DOI 10.1021/jp062746a

Khiari, B., Kordoghli, S., Mihoubi, D., Zagrouba, F., & Tazerout, M. (2018). Modeling kinetics and transport phenomena during multi-stage tire wastes pyrolysis using Comsol®. Waste Management, 78, 337-345.
DOI 10.1016/j.wasman.2018.06.002

Kordoghli, S., Khiari, B., Paraschiv, M., Zagrouba, F., & Tazerout, M. (2017). Impact of different catalysis supported by oyster shells on the pyrolysis of tyre wastes in a single and a double fixed bed reactor. Waste Management, 67, 288-297.
DOI 10.1016/j.wasman.2017.06.001

Kordoghli, S., Paraschiv, M., Kuncser, R., Tazerout, M., & Zagrouba, F. (2017). Catalysts’ influence on thermochemical decomposition of waste tires. Environmental Progress & Sustainable Energy, 36(5), 1560-1567.
DOI 10.1002/ep.12605

Laresgoiti, M., Caballero, B., de Marco, I., Torres, A., Cabrero, M., & Chomón, M. (2004). Characterization of the liquid products obtained in tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 71(2), 917-934.
DOI 10.1016/j.jaap.2003.12.003

Laresgoiti, M. F., de Marco, I., Torres, A., Caballero, B., Cabrero, M. A., & Chomón, M. J. (2000). Chromatographic analysis of the gases obtained in tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 55(1), 43-54.
DOI 10.1016/S0165-2370(99)00073-X

Leung, D., & Wang, C. (1998). Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and applied Pyrolysis, 45(2), 153-169.
DOI 10.1016/S0165-2370(98)00065-5

Lewandowski, W. M., Januszewicz, K., & Kosakowski, W. (2019). Efficiency and proportions of waste tyre pyrolysis products depending on the reactor type—A review. Journal of Analytical and applied Pyrolysis, 140, 25-53.
DOI 10.1016/j.jaap.2019.03.018

Li, S.-Q., Yao, Q., Chi, Y., Yan, J.-H., & Cen, K.-F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17), 5133-5145.
DOI 10.1021/ie030115m

Li, W., Huang, C., Li, D., Huo, P., Wang, M., Han, L., . . . Wang, Y. (2016). Derived oil production by catalytic pyrolysis of scrap tires. Chinese Journal of Catalysis, 37(4), 526-532.
DOI 10.1016/S1872-2067(15)60998-6

Lopez, F. A., El Hadad, A. A., Alguacil, F. J., Centeno, T. A., & Lobato, B. (2013). Kinetics of the thermal degradation of granulated scrap tyres: a model-free analysis. Materials Science, 19(4), 403-408.
DOI 10.5755/j01.ms.19.4.2947

Lopez, G., Amutio, M., Elordi, G., Artetxe, M., Altzibar, H., & Olazar, M. (2010). A conical spouted bed reactor for the valorisation of waste tires. Paper presented at the THE 13TH INTERNATIONAL CONFERENCE ON FLUIDIZATION - NEW PARADIGM IN FLUIDIZATION ENGINEERING. https://dc.engconfintl.org/fluidization_xiii

Ma, S., Leong, H., He, L., Xiong, Z., Han, H., Jiang, L., . . . Xiang, J. (2020). Effects of pressure and residence time on limonene production in waste tires pyrolysis process. Journal of Analytical and applied Pyrolysis, 151, 104899.
DOI 10.1016/j.jaap.2020.104899

Martínez, J. D., Puy, N., Murillo, R., García, T., Navarro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis–A review. Renewable and Sustainable Energy Reviews, 23, 179-213.
DOI 10.1016/j.rser.2013.02.038

Mavukwana, A.-e., & Sempuga, C. (2022). Recent developments in waste tyre pyrolysis and gasification processes. Chemical Engineering Communications, 209(4), 485-511.
DOI 10.1080/00986445.2020.1864624

McCullough, D. P., van Eyk, P. J., Ashman, P. J., & Mullinger, P. J. (2015). Impact of sodium and sulfur species on agglomeration and defluidization during spouted bed gasification of south Australian lignite. Energy & Fuels, 29(6), 3922-3932.
DOI 10.1021/acs.energyfuels.5b00367

Menares, T., Herrera, J., Romero, R., Osorio, P., & Arteaga-Pérez, L. E. (2020). Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 102, 21-29.
DOI 10.1016/j.wasman.2019.10.027

Miandad, R., Barakat, M., Rehan, M., Aburiazaiza, A., Gardy, J., & Nizami, A. (2018). Effect of advanced catalysts on tire waste pyrolysis oil. Process Safety and Environmental Protection, 116, 542-552.
DOI 10.1016/j.psep.2018.03.024

Miranda, M., Pinto, F., Gulyurtlu, I., & Cabrita, I. (2013). Pyrolysis of rubber tyre wastes: A kinetic study. Fuel, 103, 542-552.
DOI 10.1016/j.fuel.2012.06.114

Mkhize, N., Danon, B., van der Gryp, P., & Görgens, J. (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design, 152, 363-371.
DOI 10.1016/j.cherd.2019.09.036

Mkhize, N., van der Gryp, P., Danon, B., & Görgens, J. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 120, 314-320.
DOI 10.1016/j.jaap.2016.04.019

Mkhize, N. M. (2018). Pyrolysis process optimisation to maximise limonene production from waste tyres. (Doctoral Degrees (Chemical Engineering) Thesis (PhD)). Stellenbosch: Stellenbosch University, Retrieved from http://hdl.handle.net/10019.1/103481

Muenpol, S., Yuwapornpanit, R., & Jitkarnka, S. (2015). Valuable petrochemicals, petroleum fractions, and sulfur compounds in oils derived from waste tyre pyrolysis using five commercial zeolites as catalysts: impact of zeolite properties. Clean Technologies and Environmental Policy, 17, 1149-1159.
DOI 10.1007/s10098-015-0935-8

Ngxangxa, S. (2016). Development of GC-MS methods for the analysis of tyre pyrolysis oils. (Masters Degrees (Chemistry and Polymer Science) Thesis (MSc)). Stellenbosch: Stellenbosch University, Retrieved from http://hdl.handle.net/10019.1/98868

Nkosi, N., & Muzenda, E. (2014, July 2 - 4,). A review and discussion of waste tyre pyrolysis and derived products. Paper presented at the Proceedings of the World Congress on Engineering Vol II, London, U.K

Ortega, A. (2002). The kinetics of solid-state reactions toward consensus, Part 2: Fitting kinetics data in dynamic conventional thermal analysis. International Journal of Chemical Kinetics, 34(3), 193-208.
DOI 10.1002/kin.10028

Osorio-Vargas, P., Campos, C. H., Torres, C. C., Herrera, C., Shanmugaraj, K., Bustamante, T. M., . . . Arteaga-Pérez, L. E. (2022). Catalytic pyrolysis of used tires on noble-metal-based catalysts to obtain high-value chemicals: Reaction pathways. Catalysis Today, 394, 475-485.
DOI 10.1016/j.cattod.2021.06.029

Parthasarathy, P., Choi, H. S., Park, H. C., Hwang, J. G., Yoo, H. S., Lee, B.-K., & Upadhyay, M. (2016). Influence of process conditions on product yield of waste tyre pyrolysis-A review. Korean Journal of Chemical Engineering, 33(8), 2268-2286.
DOI 10.1007/s11814-016-0126-2

Perez-Maqueda, L., Criado, J., & Sanchez-Jimenez, P. (2006). Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. The Journal of Physical Chemistry A, 110(45), 12456-12462.
DOI 10.1021/jp064792g

Quek, A., & Balasubramanian, R. (2009). An algorithm for the kinetics of tire pyrolysis under different heating rates. Journal of Hazardous Materials, 166(1), 126-132.
DOI 10.1016/j.jhazmat.2008.11.034

Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and applied Pyrolysis, 95, 1-13.
DOI 10.1016/j.jhazmat.2008.11.034

Ramirez-Canon, A., Muñoz-Camelo, Y. F., & Singh, P. (2018). Decomposition of used Tyre Rubber by pyrolysis: enhancement of the physical properties of the liquid fraction using a hydrogen stream. Environments, 5(6), 72.
DOI 10.3390/environments5060072

Rofiqul, I. M., Haniu, H., & Rafiqul, A. B. M. (2007). Limonene-rich liquids from pyrolysis of heavy automotive tire wastes. Journal of Environment and Engineering, 2(4), 681-695.
DOI 10.1299/jee.2.681

Rowhani, A., & Rainey, T. J. (2016). Scrap tyre management pathways and their use as a fuel—a review. Energies, 9(11), 888.
DOI 10.3390/en9110888

Roy, C., Darmstadt, H., Benallal, B., & Amen-Chen, C. (1997). Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber. Fuel processing technology, 50(1), 87-103.
DOI 10.1016/S0378-3820(96)01044-2

San Miguel, G., Aguado, J., Serrano, D., & Escola, J. (2006). Thermal and catalytic conversion of used tyre rubber and its polymeric constituents using Py-GC/MS. Applied Catalysis B: Environmental, 64(3-4), 209-219

Sanchís, A., Veses, A., Martínez, J. D., López, J. M., García, T., & Murillo, R. (2022). The role of temperature profile during the pyrolysis of end-of-life-tyres in an industrially relevant conditions auger plant. Journal of environmental management, 317, 115323.
DOI 10.1016/j.jenvman.2022.115323

Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of Analytical and applied Pyrolysis, 75(1), 11-18.
DOI 10.1016/j.jaap.2005.03.002

Šesták, J., & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3(1), 1-12.
DOI 10.1016/0040-6031(71)85051-7

Shah, J., Rasul, J. M., & Mabood, F. (2008). Catalytic pyrolysis of waste tyre rubber into hydrocarbons via base catalysts. Iranian Journal of Chemistry and Chemical Engineering, Volume 27, Issue 2, June 2008, Pages 103-109

Singh, J. (2015). A review paper on pyrolysis process of waste tyre. International journal of applied research, 1, 258-262.
DOI 10.1016/j.jaap.2005.03.002

Singh, R. K., Ruj, B., Jana, A., Mondal, S., Jana, B., Sadhukhan, A. K., & Gupta, P. (2018). Pyrolysis of three different categories of automotive tyre wastes: Product yield analysis and characterization. Journal of Analytical and applied Pyrolysis, 135, 379-389.
DOI 10.1016/j.jaap.2018.08.011

Song, Z., Yang, Y., Zhao, X., Sun, J., Wang, W., Mao, Y., & Ma, C. (2017). Microwave pyrolysis of tire powders: evolution of yields and composition of products. Journal of Analytical and applied Pyrolysis, 123, 152-159.
DOI 10.1016/j.jaap.2016.12.012

Starink, M. (1996). A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta, 288(1-2), 97-104.
DOI 10.1016/S0040-6031(96)03053-5

Starink, M. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta, 404(1-2), 163-176.
DOI 10.1016/S0040-6031(03)00144-8

Uzun, B. B., & Yaman, E. (2014). Thermogravimetric characteristics and kinetics of scrap tyre and Juglans regia shell co-pyrolysis. Waste Management & Research, 32(10), 961-970.
DOI 10.1177/0734242X14539722

Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117(40), 10162-10169.
DOI 10.1021/jp407526r

Viglasky, J., Klukan, J., & Jezo, M. (2017). SCRAP TYRES AND EXPLOITATION OPTIONS FOR TYRE RUBBER MIX. MM Science Journal.
DOI 10.17973/MMSJ.2017_02_2016148

Vyazovkin, S., & Sbirrazzuoli, N. (2006). Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromolecular Rapid Communications, 27(18), 1515-1532.
DOI 10.1002/marc.200600404

Vyazovkin, S., & Wight, C. A. (1999). Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochimica Acta, 340, 53-68.
DOI 10.1016/S0040-6031(99)00253-1

White, J. E., Catallo, W. J., & Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and applied Pyrolysis, 91(1), 1-33.
DOI 10.1016/j.jaap.2011.01.004

Williams, P. T. (2013). Pyrolysis of waste tyres: a review. Waste Management, 33(8), 1714-1728.
DOI 10.1016/j.wasman.2013.05.003

Williams, P. T., & Besler, S. (1995). Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel, 74(9), 1277-1283.
DOI 10.1016/0016-2361(95)00083-H

Williams, P. T., & Brindle, A. J. (2002). Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel, 81(18), 2425-2434.
DOI 10.1016/S0016-2361(02)00196-5

Williams, P. T., & Brindle, A. J. (2003). Aromatic chemicals from the catalytic pyrolysis of scrap tyres. Journal of Analytical and applied Pyrolysis, 67(1), 143-164.
DOI 10.1016/S0165-2370(02)00059-1

Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., . . . Tian, Y. (2018). TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 175, 288-297.
DOI 10.1016/j.enconman.2018.09.013

Xu, J., Yu, J., He, W., Huang, J., Xu, J., & Li, G. (2021). Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor. Science of The Total Environment, 772, 145507.
DOI 10.1016/j.scitotenv.2021.145507

Zabaniotou, A. A., & Stavropoulos, G. (2003). Pyrolysis of used automobile tires and residual char utilization. Journal of Analytical and applied Pyrolysis, 70(2), 711-722.
DOI 10.1016/S0165-2370(03)00042-1

Zhang, G., Chen, F., Zhang, Y., Zhao, L., Chen, J., Cao, L., . . . Xu, C. (2021). Properties and utilization of waste tire pyrolysis oil: A mini review. Fuel processing technology, 211, 106582.
DOI 10.1016/j.fuproc.2020.106582

Zhang, X., Wang, T., Ma, L., & Chang, J. (2008). Vacuum pyrolysis of waste tires with basic additives. Waste Management, 28(11), 2301-2310.
DOI 10.1016/j.wasman.2007.10.009