Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
Basu P (2018) Biomass gasification, pyrolysis and torrefaction: Practical design and theory
Bai, X., Wang, G., Gong, C., Yu, Y., Liu, W., & Wang, D. (2017). Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresource technology, 233, 373-381
Bartocci, P., Bidini, G., Asdrubali, F., Beatrice, C., Frusteri, F., & Fantozzi, F. (2018). Batch pyrolysis of pellet made of biomass and crude glycerol: mass and energy balances. Renewable Energy, 124, 172-179
Collins, S., & Ghodke, P. (2018). Kinetic parameter evaluation of groundnut shell pyrolysis through use of thermogravimetric analysis. Journal of environmental chemical engineering, 6(4), 4736-4742
Caillat, S., & Vakkilainen, E. (2013). Large-scale biomass combustion plants: an overview. Biomass combustion science, technology and engineering, 189-224
Demir, V. G., Yaman, P., Efe, M. O., & Yuksel, H. Production of Bio-pellets Derived from Sawdust and Crude Glycerol
Directorate of economics and statistics G of I (2018) Kharif 2018 Survey
Donev JMKC (2018) Energy Education-Energy density
Duc, P. A., Dharanipriya, P., Velmurugan, B. K., & Shanmugavadivu, M. (2019). Groundnut shell-a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology, 20, 101206
Duan, F., Zhang, J. P., Chyang, C. S., Wang, Y. J., & Tso, J. (2014). Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel processing technology, 128, 28-35
Fasina, O. O. (2008). Physical properties of peanut hull pellets. Bioresource technology, 99(5), 1259-1266
García Fernández, R., González Vázquez, M. D. P., Pevida García, C., & Rubiera González, F. (2017). Pelletization properties of raw and torrefied pine sawdust: Effect of co-pelletization, temperature, moisture content and glycerol addition
Jamradloedluk, J., & Lertsatitthanakorn, C. (2015). Properties of densified-refuse derived fuel using glycerin as a binder. Procedia Engineering, 100, 505-510
Kluska, J., Turzyński, T., Ochnio, M., & Kardaś, D. (2020). Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets. Renewable energy, 149, 1246-1253
Kyauta, E. E., Adisa, A. B., Abdulkadir, L. N., & Balogun, S. (2015). Production and comparative study of pellets from maize cobs and groundnut shell as fuels for domestic use. Carbon, 14, 19-73
Lehtikangas, P. (2001). Quality properties of pelletised sawdust, logging residues and bark. Biomass and bioenergy, 20(5), 351-360
Li. H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., & Sokhansanj, S. (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685
Lubwama, M., & Yiga, V. A. (2017). Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renewable energy, 111, 532-542
Lingegowda, D. C., Kumar, J. K., Prasad, A. D., Zarei, M., & Gopal, S. (2012). FTIR spectroscopic studies on Cleome gynandra–comparative analysis of functional group before and after extraction. Romanian Journal of Biophysics, 22(3-4), 137-143
Ministry of New and Renewable Energy Government of India Ministry of New and Renewable Energy Government of India
Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource technology, 102(21), 10040-10046
Oyelaran, O. A., Bolaji, B. O., Waheed, M. A., & Adekunle, M. F. (2015). Characterization of briquettes produced from groundnut shell and waste paper admixture
Paulauskas, R., Džiugys, A., & Striūgas, N. (2015). Experimental investigation of wood pellet swelling and shrinking during pyrolysis. Fuel, 142, 145-151
Radhakrishnan, N., & Gnanamoorthi, V. (2015). Pyrolysis of groundnut shell biomass to produce bio-oil. J. Chem. Pharm. Sci, 9, 34-36
Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699-706
Soni, B., & Karmee, S. K. (2020). Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel, 271, 117570
The Engineering Toolbox Fuels - Higher and Lower Calorific Values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html
Tinwala, F., Mohanty, P., Parmar, S., Patel, A., & Pant, K. K. (2015). Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization. Bioresource Technology, 188, 258-264
UNECE Methane Management. https://www.unece.org/energywelcome/areas-of-work/methane-management/the-challenge. Accessed 25 Nov 2020
Undri, A., Abou-Zaid, M., Briens, C., Berruti, F., Rosi, L., Bartoli, M., ... & Frediani, P. (2015). Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel, 153, 464-482
Verma, V. K., Bram, S., Delattin, F., Laha, P., Vandendael, I., Hubin, A., & De Ruyck, J. (2012). Agro-pellets for domestic heating boilers: Standard laboratory and real life performance. Applied Energy, 90(1), 17-23
Valliyappan, T., Bakhshi, N. N., & Dalai, A. K. (2008). Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresource technology, 99(10), 4476-4483
Wibowo, S., & Lestari, N. (2018). Effect of peanut shell torrefaction on qualities of the produced bio-pellet. Reaktor, 18(04), 183-193
Wang, S., Song, T., Yin, S., Hartge, E. U., Dymala, T., Shen, L., ... & Werther, J. (2020). Syngas, tar and char behavior in chemical looping gasification of sawdust pellet in fluidized bed. Fuel, 270, 117464
Yang, Y., Brammer, J. G., Wright, D. G., Scott, J. A., Serrano, C., & Bridgwater, A. V. (2017). Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Applied Energy, 191, 639-652
Yang, Y., Brammer, J. G., Mahmood, A. S. N., & Hornung, A. (2014). Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresource technology, 169, 794-799
Zhou, C., Zhang, Q., Arnold, L., Yang, W., & Blasiak, W. (2013). A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Applied energy, 107, 173-182
Hai, Abdul, G. Bharath, Muhammad Daud, K. Rambabu, Imtiaz Ali, Shadi W. Hasan, PauLoke Show, and Fawzi Banat. “Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling.” Chemosphere 283 (2021): 131162
Pedro Melo Rodrigues and Joaquim Esteves da Silva
Published 08 Mar 2023Marc A. Rosen
Published 08 Mar 2023Andrea Zatti
Published 08 Mar 2023Title | Support | Price |
---|