Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
Basu P (2018) Biomass gasification, pyrolysis and torrefaction: Practical design and theory
Bai, X., Wang, G., Gong, C., Yu, Y., Liu, W., & Wang, D. (2017). Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresource technology, 233, 373-381
Bartocci, P., Bidini, G., Asdrubali, F., Beatrice, C., Frusteri, F., & Fantozzi, F. (2018). Batch pyrolysis of pellet made of biomass and crude glycerol: mass and energy balances. Renewable Energy, 124, 172-179
Collins, S., & Ghodke, P. (2018). Kinetic parameter evaluation of groundnut shell pyrolysis through use of thermogravimetric analysis. Journal of environmental chemical engineering, 6(4), 4736-4742
Caillat, S., & Vakkilainen, E. (2013). Large-scale biomass combustion plants: an overview. Biomass combustion science, technology and engineering, 189-224
Demir, V. G., Yaman, P., Efe, M. O., & Yuksel, H. Production of Bio-pellets Derived from Sawdust and Crude Glycerol
Directorate of economics and statistics G of I (2018) Kharif 2018 Survey
Donev JMKC (2018) Energy Education-Energy density
Duc, P. A., Dharanipriya, P., Velmurugan, B. K., & Shanmugavadivu, M. (2019). Groundnut shell-a beneficial bio-waste. Biocatalysis and Agricultural Biotechnology, 20, 101206
Duan, F., Zhang, J. P., Chyang, C. S., Wang, Y. J., & Tso, J. (2014). Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel processing technology, 128, 28-35
Fasina, O. O. (2008). Physical properties of peanut hull pellets. Bioresource technology, 99(5), 1259-1266
García Fernández, R., González Vázquez, M. D. P., Pevida García, C., & Rubiera González, F. (2017). Pelletization properties of raw and torrefied pine sawdust: Effect of co-pelletization, temperature, moisture content and glycerol addition
Jamradloedluk, J., & Lertsatitthanakorn, C. (2015). Properties of densified-refuse derived fuel using glycerin as a binder. Procedia Engineering, 100, 505-510
Kluska, J., Turzyński, T., Ochnio, M., & Kardaś, D. (2020). Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets. Renewable energy, 149, 1246-1253
Kyauta, E. E., Adisa, A. B., Abdulkadir, L. N., & Balogun, S. (2015). Production and comparative study of pellets from maize cobs and groundnut shell as fuels for domestic use. Carbon, 14, 19-73
Lehtikangas, P. (2001). Quality properties of pelletised sawdust, logging residues and bark. Biomass and bioenergy, 20(5), 351-360
Li. H., Liu, X., Legros, R., Bi, X. T., Lim, C. J., & Sokhansanj, S. (2012). Pelletization of torrefied sawdust and properties of torrefied pellets. Applied Energy, 93, 680-685
Lubwama, M., & Yiga, V. A. (2017). Development of groundnut shells and bagasse briquettes as sustainable fuel sources for domestic cooking applications in Uganda. Renewable energy, 111, 532-542
Lingegowda, D. C., Kumar, J. K., Prasad, A. D., Zarei, M., & Gopal, S. (2012). FTIR spectroscopic studies on Cleome gynandra–comparative analysis of functional group before and after extraction. Romanian Journal of Biophysics, 22(3-4), 137-143
Ministry of New and Renewable Energy Government of India Ministry of New and Renewable Energy Government of India
Novo, L. P., Gurgel, L. V. A., Marabezi, K., & da Silva Curvelo, A. A. (2011). Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource technology, 102(21), 10040-10046
Oyelaran, O. A., Bolaji, B. O., Waheed, M. A., & Adekunle, M. F. (2015). Characterization of briquettes produced from groundnut shell and waste paper admixture
Paulauskas, R., Džiugys, A., & Striūgas, N. (2015). Experimental investigation of wood pellet swelling and shrinking during pyrolysis. Fuel, 142, 145-151
Radhakrishnan, N., & Gnanamoorthi, V. (2015). Pyrolysis of groundnut shell biomass to produce bio-oil. J. Chem. Pharm. Sci, 9, 34-36
Serrano, C., Monedero, E., Lapuerta, M., & Portero, H. (2011). Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technology, 92(3), 699-706
Soni, B., & Karmee, S. K. (2020). Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel, 271, 117570
The Engineering Toolbox Fuels - Higher and Lower Calorific Values. https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html
Tinwala, F., Mohanty, P., Parmar, S., Patel, A., & Pant, K. K. (2015). Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization. Bioresource Technology, 188, 258-264
UNECE Methane Management. https://www.unece.org/energywelcome/areas-of-work/methane-management/the-challenge. Accessed 25 Nov 2020
Undri, A., Abou-Zaid, M., Briens, C., Berruti, F., Rosi, L., Bartoli, M., ... & Frediani, P. (2015). Bio-oil from pyrolysis of wood pellets using a microwave multimode oven and different microwave absorbers. Fuel, 153, 464-482
Verma, V. K., Bram, S., Delattin, F., Laha, P., Vandendael, I., Hubin, A., & De Ruyck, J. (2012). Agro-pellets for domestic heating boilers: Standard laboratory and real life performance. Applied Energy, 90(1), 17-23
Valliyappan, T., Bakhshi, N. N., & Dalai, A. K. (2008). Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresource technology, 99(10), 4476-4483
Wibowo, S., & Lestari, N. (2018). Effect of peanut shell torrefaction on qualities of the produced bio-pellet. Reaktor, 18(04), 183-193
Wang, S., Song, T., Yin, S., Hartge, E. U., Dymala, T., Shen, L., ... & Werther, J. (2020). Syngas, tar and char behavior in chemical looping gasification of sawdust pellet in fluidized bed. Fuel, 270, 117464
Yang, Y., Brammer, J. G., Wright, D. G., Scott, J. A., Serrano, C., & Bridgwater, A. V. (2017). Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Applied Energy, 191, 639-652
Yang, Y., Brammer, J. G., Mahmood, A. S. N., & Hornung, A. (2014). Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresource technology, 169, 794-799
Zhou, C., Zhang, Q., Arnold, L., Yang, W., & Blasiak, W. (2013). A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels. Applied energy, 107, 173-182
Hai, Abdul, G. Bharath, Muhammad Daud, K. Rambabu, Imtiaz Ali, Shadi W. Hasan, PauLoke Show, and Fawzi Banat. “Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling.” Chemosphere 283 (2021): 131162
Marco La Monica, Mariarita Paciolla, Francesca Ceruti, Francesca Ferrero, Giacomo Seravalli and Tiziana Beltrani
Published 08 Mar 2023Daniela Fico, Daniela Rizzo, Fabiola Malinconico and Carola Esposito Corcione
Published 08 Mar 2023Germana Borsetta, Emanuela Frapiccini, Alessandra Roncarati, Martina Quagliardi, Mauro Marini, Monica Panfili and Sauro Vittori
Published 08 Mar 2023Title | Support | Price |
---|