Released under All rights reserved
Copyright: © 2025 CISA Publisher
Aslan, D. I., Parthasarathy, P., Goldfarb, J. L., & Ceylan, S. (2017). Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization. Waste Management, 68, 405-411.
DOI 10.1016/j.wasman.2017.06.006
Coats, A., & Redfern, J.-P. (1965). Kinetic parameters from thermogravimetric data. II. Journal of Polymer Science Part B: Polymer Letters, 3(11), 917-920.
DOI 10.1002/pol.1965.110031106
Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56-60.
DOI 10.1016/j.tca.2015.10.008
Danon, B., Mkhize, N., Van Der Gryp, P., & Görgens, J. (2015). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica acta, 601, 45-53.
DOI 10.1016/j.tca.2014.12.003
Ding, K., Zhong, Z., Zhang, B., Song, Z., & Qian, X. (2015). Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry. Energy & Fuels, 29(5), 3181-3187.
DOI 10.1021/acs.energyfuels.5b00247
Ding, K., Zhong, Z., Zhang, B., Wang, J., Min, A., & Ruan, R. (2016). Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. Journal of Analytical and applied Pyrolysis, 122, 55-63.
DOI 10.1016/j.jaap.2016.10.023
Doddipatla, S., Galimova, G. R., Wei, H., Thomas, A. M., He, C., Yang, Z., Morozov, A. N., Shingledecker, C. N., Mebel, A. M., & Kaiser, R. I. (2021). Low-temperature gas-phase formation of indene in the interstellar medium. Science advances, 7(1), eabd4044.
DOI 10.1126/sciadv.abd4044
Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of polymer science part C: polymer symposia,
Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and applied Pyrolysis, 129, 1-5.
DOI 10.1016/j.jaap.2017.12.016
Han, J., Yao, X., Zhan, Y., Oh, S.-Y., Kim, L.-H., & Kim, H.-J. (2017). A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute, 90(2), 331-335
Iwarere, S. A., & Mkhize, N. M. (2019). PYROLYSIS OF VARIOUS TYRE TYPES: CHARACTERISTICS AND KINETIC STUDIES USING THERMOGRAVIMETRIC ANALYSIS. Detritus(2019-Volume), 0.
DOI 10.31025/2611-4135/2019.13870
Khawam, A., & Flanagan, D. R. (2006). Basics and applications of solid-state kinetics: a pharmaceutical perspective. Journal of pharmaceutical sciences, 95(3), 472-498.
DOI 10.1002/jps.20559
Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29(11), 1702-1706
Leung, D., & Wang, C. (1998). Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and applied Pyrolysis, 45(2), 153-169.
DOI 10.1016/S0165-2370(98)00065-5
Li, S.-Q., Yao, Q., Chi, Y., Yan, J.-H., & Cen, K.-F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17), 5133-5145.
DOI 10.1021/ie030115m
Menares, T., Herrera, J., Romero, R., Osorio, P., & Arteaga-Pérez, L. E. (2020). Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 102, 21-29.
DOI 10.1016/j.wasman.2019.10.027
Mkhize, N., Danon, B., van der Gryp, P., & Görgens, J. (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design, 152, 363-371.
DOI 10.1016/j.cherd.2019.09.036
Mkhize, N., van der Gryp, P., Danon, B., & Görgens, J. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 120, 314-320.
DOI 10.1016/j.jaap.2016.04.019
Mwelwa, M. K., Iwarere, S. A., & Mkhize, N. M. (2023). Advances in understanding kinetic mechanisms underlying waste ground tyre rubber pyrolysis. Detritus(24), 52.
DOI 10.31025/2611-4135/2023.18315
Ngxangxa, S. (2016). Development of GC-MS methods for the analysis of tyre pyrolysis oils [Thesis (MSc), Stellenbosch: Stellenbosch University]. http://hdl.handle.net/10019.1/98868
Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and applied Pyrolysis, 95, 1-13.
DOI 10.1016/j.jhazmat.2008.11.034
Roy, C., & Unsworth, J. (1989). Pilot plant demonstration of used tyres vacuum pyrolysis. Pyrolysis and gasification, 180-189
Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of analytical and applied pyrolysis, 75(1), 11-18.
DOI 10.1016/j.jaap.2005.03.002
Smitha, B., Suhanya, D., Sridhar, S., & Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation—a review. Journal of Membrane Science, 241(1), 1-21.
DOI 10.1016/j.memsci.2004.03.042
Starink, M. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta, 404(1-2), 163-176
Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G. N., Azimi, A. A., & Ghadiri, S. K. (2010). Removal of petroleum aromatic hydrocarbons by surfactant‐modified natural zeolite: the effect of surfactant. CLEAN–Soil, Air, Water, 38(1), 77-83.
DOI 10.1002/clen.200900157
Tsipa, P. C., Phiri, M. M., Iwarere, S. A., Mkhize, N. M., Phiri, M. J., & Hlangothi, S. P. (2024). A novel chemical pre-pyrolysis treatment of waste tyre crumbs: A viable way for low temperature waste tyre pyrolysis. Journal of analytical and applied pyrolysis, 181, 106631.
DOI 10.1016/j.jaap.2024.106631
Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117(40), 10162-10169.
DOI 10.1021/jp407526r
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 520(1-2), 1-19.
DOI 10.1016/j.tca.2011.03.034
Williams, P. T., & Besler, S. (1995). Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel, 74(9), 1277-1283.
DOI 10.1016/0016-2361(95)00083-H
Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., Qiao, Y., & Tian, Y. (2018). TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 175, 288-297.
DOI 10.1016/j.enconman.2018.09.013
Stefano Caro, Matteo Ulivi, Alessandro Ratto and Olli Dahl
Published 09 Sep 2025Maxwell Katambwa Mwelwa, Samuel Ayodele Iwarere and Ntandoyenkosi Malusi Mkhize
Published 09 Sep 2025Kacper Świechowski, Ewa Syguła, Waheed Adewale Rasaq, Alan Gasiński and Jacek Łyczko
Published 09 Sep 2025Title | Support | Price |
---|