an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

TRUCK TYRE CHARACTERISATION AND KINETIC MECHANISM STUDY FOR VALUABLE CHEMICALS PRODUCTION

  • Maxwell Katambwa Mwelwa - Chemical Engineering Discipline, University of KwaZulu-Natal, South Africa
  • Samuel Ayodele Iwarere - Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, South Africa
  • Ntandoyenkosi Malusi Mkhize - Chemical Engineering Discipline, University of KwaZulu-Natal, South Africa

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

Waste tyre pyrolysis is a promising strategy for converting end-of-life tyres into valuable chemical feedstocks. This study investigates the thermal degradation behaviour of truck tyre (TT) crumbs and evaluates the selective production of high-value compounds, particularly limonene and indene, under varying pyrolysis conditions. A combined approach employing thermogravimetric analysis, kinetic modelling (both model-free and model-fitting methods), and analytical pyrolysis coupled with gas chromatography-mass spectrometry (Py-GC/MS) was used to elucidate the relationship between temperature, heating rate, and product selectivity. Activation energy estimates ranged from 122 to 145 kJ.mol-1 across different kinetic models, indicating a multi-step degradation mechanism. The highest limonene selectivity (64.2%) was achieved at 400°C, but this declined to 28.5% at 700°C due to secondary cracking and aromatisation reactions. Additionally, faster heating rates enhanced limonene yield, with selectivity increasing from 30.8 % at 20 °C /min to 42.7% at 100 °C /min. these results highlight the importance of optimising thermal parameters to favour the formation of target chemical and provide essential kinetic and chemical data for the design of tyre pyrolysis systems focussed on selective product recovery.

Keywords


Editorial History

  • Received: 30 Jan 2025
  • Revised: 07 Jul 2025
  • Accepted: 06 Aug 2025
  • Available online: 09 Sep 2025

References

Aslan, D. I., Parthasarathy, P., Goldfarb, J. L., & Ceylan, S. (2017). Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization. Waste Management, 68, 405-411.
DOI 10.1016/j.wasman.2017.06.006

Coats, A., & Redfern, J.-P. (1965). Kinetic parameters from thermogravimetric data. II. Journal of Polymer Science Part B: Polymer Letters, 3(11), 917-920.
DOI 10.1002/pol.1965.110031106

Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56-60.
DOI 10.1016/j.tca.2015.10.008

Danon, B., Mkhize, N., Van Der Gryp, P., & Görgens, J. (2015). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica acta, 601, 45-53.
DOI 10.1016/j.tca.2014.12.003

Ding, K., Zhong, Z., Zhang, B., Song, Z., & Qian, X. (2015). Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry. Energy & Fuels, 29(5), 3181-3187.
DOI 10.1021/acs.energyfuels.5b00247

Ding, K., Zhong, Z., Zhang, B., Wang, J., Min, A., & Ruan, R. (2016). Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. Journal of Analytical and applied Pyrolysis, 122, 55-63.
DOI 10.1016/j.jaap.2016.10.023

Doddipatla, S., Galimova, G. R., Wei, H., Thomas, A. M., He, C., Yang, Z., Morozov, A. N., Shingledecker, C. N., Mebel, A. M., & Kaiser, R. I. (2021). Low-temperature gas-phase formation of indene in the interstellar medium. Science advances, 7(1), eabd4044.
DOI 10.1126/sciadv.abd4044

Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of polymer science part C: polymer symposia,

Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and applied Pyrolysis, 129, 1-5.
DOI 10.1016/j.jaap.2017.12.016

Han, J., Yao, X., Zhan, Y., Oh, S.-Y., Kim, L.-H., & Kim, H.-J. (2017). A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute, 90(2), 331-335

Iwarere, S. A., & Mkhize, N. M. (2019). PYROLYSIS OF VARIOUS TYRE TYPES: CHARACTERISTICS AND KINETIC STUDIES USING THERMOGRAVIMETRIC ANALYSIS. Detritus(2019-Volume), 0.
DOI 10.31025/2611-4135/2019.13870

Khawam, A., & Flanagan, D. R. (2006). Basics and applications of solid-state kinetics: a pharmaceutical perspective. Journal of pharmaceutical sciences, 95(3), 472-498.
DOI 10.1002/jps.20559

Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29(11), 1702-1706

Leung, D., & Wang, C. (1998). Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and applied Pyrolysis, 45(2), 153-169.
DOI 10.1016/S0165-2370(98)00065-5

Li, S.-Q., Yao, Q., Chi, Y., Yan, J.-H., & Cen, K.-F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17), 5133-5145.
DOI 10.1021/ie030115m

Menares, T., Herrera, J., Romero, R., Osorio, P., & Arteaga-Pérez, L. E. (2020). Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 102, 21-29.
DOI 10.1016/j.wasman.2019.10.027

Mkhize, N., Danon, B., van der Gryp, P., & Görgens, J. (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design, 152, 363-371.
DOI 10.1016/j.cherd.2019.09.036

Mkhize, N., van der Gryp, P., Danon, B., & Görgens, J. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 120, 314-320.
DOI 10.1016/j.jaap.2016.04.019

Mwelwa, M. K., Iwarere, S. A., & Mkhize, N. M. (2023). Advances in understanding kinetic mechanisms underlying waste ground tyre rubber pyrolysis. Detritus(24), 52.
DOI 10.31025/2611-4135/2023.18315

Ngxangxa, S. (2016). Development of GC-MS methods for the analysis of tyre pyrolysis oils [Thesis (MSc), Stellenbosch: Stellenbosch University]. http://hdl.handle.net/10019.1/98868

Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and applied Pyrolysis, 95, 1-13.
DOI 10.1016/j.jhazmat.2008.11.034

Roy, C., & Unsworth, J. (1989). Pilot plant demonstration of used tyres vacuum pyrolysis. Pyrolysis and gasification, 180-189

Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of analytical and applied pyrolysis, 75(1), 11-18.
DOI 10.1016/j.jaap.2005.03.002

Smitha, B., Suhanya, D., Sridhar, S., & Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation—a review. Journal of Membrane Science, 241(1), 1-21.
DOI 10.1016/j.memsci.2004.03.042

Starink, M. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta, 404(1-2), 163-176

Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G. N., Azimi, A. A., & Ghadiri, S. K. (2010). Removal of petroleum aromatic hydrocarbons by surfactant‐modified natural zeolite: the effect of surfactant. CLEAN–Soil, Air, Water, 38(1), 77-83.
DOI 10.1002/clen.200900157

Tsipa, P. C., Phiri, M. M., Iwarere, S. A., Mkhize, N. M., Phiri, M. J., & Hlangothi, S. P. (2024). A novel chemical pre-pyrolysis treatment of waste tyre crumbs: A viable way for low temperature waste tyre pyrolysis. Journal of analytical and applied pyrolysis, 181, 106631.
DOI 10.1016/j.jaap.2024.106631

Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117(40), 10162-10169.
DOI 10.1021/jp407526r

Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 520(1-2), 1-19.
DOI 10.1016/j.tca.2011.03.034

Williams, P. T., & Besler, S. (1995). Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel, 74(9), 1277-1283.
DOI 10.1016/0016-2361(95)00083-H

Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., Qiao, Y., & Tian, Y. (2018). TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 175, 288-297.
DOI 10.1016/j.enconman.2018.09.013