Released under CC BY-NC-ND
Copyright: © Cisa Publisher
Bajracharya, S., Heijne, A. ter, Benetton, X.D., Vanbroekhoven, K., Buisman, C.J.N., Strik, D.P.B.T.B., Pant, D., 2015. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour. Technol. 195, 14–24. https://doi.org/10.1016/j.biortech.2015.05.081
Bapteste, É., Brochier, C., Boucher, Y.A.N., 2005. Higher-level classification of the Archaea : evolution of methanogenesis and methanogens 353–363.
Batlle-Vilanova, P., Puig, S., Gonzalez-Olmos, R., Vilajeliu-Pons, A., Balaguer, M.D., Colprim, J., 2015. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode. RSC Adv. 5, 52243–52251. https://doi.org/10.1039/C5RA09039C
Blasco-Gómez, R., Batlle-Vilanova, P., Villano, M., Balaguer, M., Colprim, J., Puig, S., 2017. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int. J. Mol. Sci. 18, 874. https://doi.org/10.3390/ijms18040874
Bo, T., Zhu, X., Zhang, L., Tao, Y., He, X., Li, D., Yan, Z., 2014. A new upgraded biogas production process: Coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem. commun. 45, 67–70. https://doi.org/10.1016/j.elecom.2014.05.026
Breyer, C., Gerlach, A., 2013. Global overview on grid-parity. Prog. Photovolt Res. Appl. 21, 121–136. https://doi.org/10.1002/pip
Carey, D.E., Yang, Y., McNamara, P.J., Mayer, B.K., 2016. Recovery of agricultural nutrients from biorefineries. Bioresour. Technol. 215, 186–198. https://doi.org/10.1016/j.biortech.2016.02.093
Chen, S., Rotaru, A.-E., Shrestha, P.M., Malvankar, N.S., Liu, F., Fan, W., Nevin, K.P., Lovley, D.R., 2014. Promoting interspecies electron transfer with biochar. Sci. Rep. 4, 5019. https://doi.org/10.1038/srep05019
Cheng, S., Xing, D., Call, D.F., Logan, B.E., 2009a. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958. https://doi.org/10.1021/es803531g
Cheng, S., Xing, D., Call, D.F., Logan, B.E., 2009b. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958. https://doi.org/10.1021/es803531g
Cruz Viggi, C., Simonetti, S., Palma, E., Pagliaccia, P., Braguglia, C., Fazi, S., Baronti, S., Navarra, M.A., Pettiti, I., Koch, C., Harnisch, F., Aulenta, F., 2017. Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar. Biotechnol. Biofuels 10, 303. https://doi.org/10.1186/s13068-017-0994-7
EURObserv’ER, 2014. Biogas barometer.
Gahleitner, G., 2013. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. Int. J. Hydrogen Energy 38, 2039–2061. https://doi.org/10.1016/j.ijhydene.2012.12.010
Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R., Kolb, T., 2016. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 85, 1371–1390. https://doi.org/10.1016/j.renene.2015.07.066
Hara, M., Onaka, Y., Kobayashi, H., Fu, Q., Kawaguchi, H., Vilcaez, J., Sato, K., 2013. Mechanism of electromethanogenic reduction of CO2 by a thermophilic methanogen. Energy Procedia 37, 7021–7028. https://doi.org/10.1016/j.egypro.2013.06.637
Holmes, D.E., Shrestha, P.M., Walker, D.J.F., Dang, Y., Nevin, K.P., Woodard, T.L., Lovley, D.R., 2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microbiol. AEM.00223-17. https://doi.org/10.1128/AEM.00223-17
Jadhav, D.A., Ghosh Ray, S., Ghangrekar, M.M., 2017. Third generation in bio-electrochemical system research ??? A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew. Sustain. Energy Rev. 76, 1022–1031. https://doi.org/10.1016/j.rser.2017.03.096
Kappler, A., Wuestner, M.L., Ruecker, A., Harter, J., Halama, M., Behrens, S., 2014. Biochar as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environ. Sci. Technol. Lett. 1, 339–344. https://doi.org/10.1021/ez5002209
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G., 2012. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. J. Environ. Qual. 41, 990. https://doi.org/10.2134/jeq2011.0070
Logan, B.E., Rabaey, K., 2012. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies. Science (80-. ). 337, 686–690. https://doi.org/10.1126/science.1216852
Lovley, D.R., 2011. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. https://doi.org/10.1007/s11157-011-9236-9
Lü, F., Luo, C., Shao, L., He, P., 2016. Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina. Water Res. 90, 34–43. https://doi.org/10.1016/j.watres.2015.12.029
Manzini, E., Scaglia, B., Schievano, A., Adani, F., 2015. Dark fermentation effectiveness as a key step for waste biomass refineries: influence of organic matter macromolecular composition and bioavailability. Int. J. Energy Res. 31, n/a-n/a. https://doi.org/10.1002/er.3347
McCarty, P.L., Bae, J., Kim, J., 2011. Domestic wastewater treatment as a net energy producer-can this be achieved? Environ. Sci. Technol. 45, 7100–7106. https://doi.org/10.1021/es2014264
Mumme, J., Srocke, F., Heeg, K., Werner, M., 2014. Use of biochars in anaerobic digestion. Bioresour. Technol. 164, 189–197. https://doi.org/10.1016/J.BIORTECH.2014.05.008
Pognani, M., D’Imporzano, G., Minetti, C., Scotti, S., Adani, F., 2015. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach. Waste Manag. 35, 111–118. https://doi.org/10.1016/J.WASMAN.2014.09.009
Premier, G.C., Kim, J.R., Massanet-Nicolau, J., Kyazze, G., Esteves, S.R.R., Penumathsa, B.K. V, Rodríguez, J., Maddy, J., Dinsdale, R.M., Guwy, a. J., 2013. Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew. Energy 49, 188–192. https://doi.org/10.1016/j.renene.2012.01.035
Rabaey, K., Rozendal, R. a, 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716. https://doi.org/10.1038/nrmicro2422
Schievano, A., Pepé Sciarria, T., Vanbroekhoven, K., De Wever, H., Puig, S., Andersen, S.J., Rabaey, K., Pant, D., 2016. Electro-Fermentation – Merging Electrochemistry with Fermentation in Industrial Applications. Trends Biotechnol. 34, 866–878. https://doi.org/10.1016/j.tibtech.2016.04.007
Schievano, A., Sciarria, T.P., Gao, Y.C., Scaglia, B., Salati, S., Zanardo, M., Quiao, W., Dong, R., Adani, F., 2016. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran. Waste Manag. https://doi.org/10.1016/j.wasman.2016.07.001
Schievano, A., Tenca, A., Lonati, S., Manzini, E., Adani, F., 2014. Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 124, 335–342.
Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., Oberti, R., Adani, F., 2012. Two-stage vs single-stage thermophilic anaerobic digestion: Comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 46, 8502–8510.
Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y.S., Singh, R., Saxena, A.K., 2013. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Biol. 55, 107–116. https://doi.org/10.1016/j.ejsobi.2012.12.008
van Eerten-Jansen, M.C.A.A., Jansen, N.C., Plugge, C.M., de Wilde, V., Buisman, C.J.N., ter Heijne, A., 2015. Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J. Chem. Technol. Biotechnol. 90, 963–970. https://doi.org/10.1002/jctb.4413
Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G., 2009. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100, 3713–3717. https://doi.org/10.1016/j.biortech.2009.01.025
You, J., Santoro, C., Greenman, J., Melhuish, C., Cristiani, P., Li, B., Ieropoulos, I., 2014. Micro-porous layer (MPL)-based anode for microbial fuel cells. Int. J. Hydrogen Energy 39, 21811–21818. https://doi.org/10.1016/j.ijhydene.2014.07.136
Zhao, G., Ma, F., Sun, T., Li, S., You, K., Zhao, Z., 2014. Analysis of microbial community in a full-scale biogas digester of cold region using high-throughput sequencing technology. Harbin Gongye Daxue Xuebao/Journal Harbin Inst. Technol. 46.
Zoss, T., Dace, E., Blumberga, D., 2016. Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region. Appl. Energy 170, 278–285. https://doi.org/10.1016/J.APENERGY.2016.02.137
Zoulias, E., Varkaraki, E., 2004. A review on water electrolysis. Tcjst 4, 41–71.
Stefano Caro, Matteo Ulivi, Alessandro Ratto and Olli Dahl
Published 31 Mar 2018Panagiotis Basinas, Kateřina Chamrádová, Olga Vosnaki and Jiří Rusín
Published 31 Mar 2018Kacper Świechowski, Ewa Syguła, Waheed Adewale Rasaq, Alan Gasiński and Jacek Łyczko
Published 31 Mar 2018Title | Support | Price |
---|