Released under CC BY-NC-ND
Copyright: © 2024 CISA Publisher
Alfè, M., Gargiulo, V., Porto, M., Migliaccio, R., Le Pera, A., Sellaro, M., Pellegrino, C., Abe, A. A., Urciuolo, M., Caputo, P., Calandra, P., Loise, V., Rossi, C. O., & Ruoppolo, G. (2022). Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision. Molecules, 27(23), 8114.
DOI 10.3390/molecules27238114
Al-Hajaya, M., Aljbour, S. H., Al-Hamaiedeh, H., Abuzaid, M., El-Hasan, T., Hemidat, S., & Nassour, A. (2021). Investigation of Energy Recovery from Municipal Solid Waste: A Case Study of Al-Karak City / Jordan. Civil and Environmental Engineering, 17(2), 610–620.
DOI 10.2478/cee-2021-0061
Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Hassan Shah, M. U., Zaman, M. K. U., Mukhtar, A., Saqib, S., Ch, S. I., Ibrahim, M., Ullah, S., Al-Sehemi, A. G., Ahmad, S. R., Klemeš, J. J., Bokhari, A., & Asif, S. (2021). Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: A sustainable case study. J. Clean. Prod., 287.
DOI 10.1016/j.jclepro.2020.125575
BMUV. (2023). Waste Management in Germany 2023 – Facts, data, figures. Bundesministerium Für Umwelt, Naturschutz, Nukleare Sicherheit Und Verbraucherschutz (Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection). www.bmuv.de/en/publications
Boumanchar, I., Chhiti, Y., Ezzahrae, F., Alaoui, M., El, A., Sahibed-dine, A., Bentiss, F., Jama, C., Bensitel, M., 2016. Effect of materials mixture on the higher heating value: case of biomass, biochar and municipal solid waste. Waste Manage.
DOI 10.1016/j.wasman.2016.11.012
BPS Jakarta. (2023). Jakarta City Statistic. Badan Pusat Statistik Kota Jakarta (Central Statistics Bureau of Jakarta City). https://jakarta.bps.go.id/indicator/12/1270/1/jumlah-penduduk-menurut-kabupaten-kota-di-provinsi-dki-jakarta-.html
Brás, I., Silva, M. E., Lobo, G., Cordeiro, A., Faria, M., & de Lemos, L. T. (2017). Refuse derived fuel from municipal solid waste rejected fractions-a case study. Energy Procedia, 120, 349-356.
DOI 10.1016/j.egypro.2017.07.227
Cembureau. (2023). Reaching Climate Neutrality Along The Cement And Concrete Value Chain By 2050 Cementing The European Green Deal. European Cement Association. https://cembureau.eu/media/w0lbouva/cembureau-2050-roadmap_executive-summary_final-version_web.pdf
Cheng, S., Ding, X., Dong, X., Zhang, M., Tian, X., Liu, Y., Huang, Y., & Jin, B. (2023). Immigration, transformation, and emission control of sulfur and nitrogen during gasification of MSW: Fundamental and engineering review. Carbon Resour. Convers., 6(3), 184–204.
DOI 10.1016/j.crcon.2023.03.003
Conceição, S., & Rolim, J. (2019). Using Waste Heat to Dry RDF: a Technical and Environmental Assessment of the Low Temperature Belt Dryer Technology. Environmental Management and Sustainable Development, 8(2), 113.
DOI 10.5296/emsd.v8i2.14441
Dharmendra. (2022). Organic waste: generation, composition and valorisation. In C. Hussain and S. Hait (Eds.), Advanced Organic Waste Management: Sustainable Practices and Approaches (pp. 3-15). Elsevier.
DOI 10.1016/C2020-0-02931-2
Drudi, K. C. R., Drudi, R., Martins, G., Antonio, G. C., & Leite, J. T. C. (2019). Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition. Waste Management, 87, 782–790.
DOI 10.1016/j.wasman.2019.03.012
EN ISO 21640:2021. (2021). Standards Publication Solid Recovered Fuels—Specifications and Classes
Fatimah, Y. A., Govindan, K., Murniningsih, R., & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod., 269, 122263.
DOI 10.1016/j.jclepro.2020.122263
Gadaleta, G., De Gisi, S., Todaro, F., & Notarnicola, M. (2022). Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis. Clean Technologies, 4(2), 380–394.
DOI 10.3390/cleantechnol4020023
He, T., Niu, D., Chen, G., Wu, F., & Chen, Y. (2022). Exploring Key Components of Municipal Solid Waste in Prediction of Moisture Content in Different Functional Areas Using Artificial Neural Network. Sustainability (Switzerland), 14(23).
DOI 10.3390/su142315544
Indocement. (2022). 2022 Sustainability Report [White paper]. PT Indocement Tunggal Prakarsa Tbk. https://www.indocement.co.id/resource/03.%20Investor/3.8.2%20Laporan%20Keberlanjutan/2022-Laporan%20Keberlanjutan-INTP.pdf
Indocement. (2024). Co-processing data in PT Indocement Tunggal Prakarsa Tbk. PT Indocement Tunggal Prakarsa Tbk
Ismail, T. M., Yoshikawa, K., Sherif, H., Salah, M., & Saeed, S. (2019). Assessment of Thermal Treatment for Windrow Drying Process of Refuse-Derived Fuel (RDF): A Case Study. Detritus, (5).
DOI 10.31025/2611-4135/2019.13781
Juhrich, K. (2022). CO2 Emission Factors for Fossil Fuels. German Environment Agency. https://www.umweltbundesamt.de/en/publikationen/co2-emission-factors-for-fossil-fuels-0
Kang, S., Kim, S., Lee, D., Lee, J., Kim, K. H., & Jeon, E. C. (2017). The study on biomass fraction estimation for waste incinerated in Korea: A case study. Sustainability (Switzerland), 9(4).
DOI 10.3390/su9040511
Kemenperin. (2022). Industrial Green House Gases in Indonesia. Kementerian Perindustrian Republik Indonesia (Ministry of Industry of Republic Indonesia). http://bskji.kemenperin.go.id/wp-content/uploads/2023/03/LAPTRI-I-2022_PIH.pdf
KLHK. (2023). Waste Figure in Indonesia. Kementerian Lingkungan Hidup Republik Indonesia (Ministry of Environment & Forestry Republic of Indonesia). https://sipsn.menlhk.go.id/sipsn/
Komilis, D., Evangelou, A., Giannakis, G., & Lymperis, C. (2012). Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Manage, 32(3), 372–381.
DOI 10.1016/j.wasman.2011.10.034
Komilis, D., Kissas, K., & Symeonidis, A. (2014). Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Management, 34(2), 249–255.
DOI 10.1016/j.wasman.2013.09.023
Lee, U., Chung, J. N., & Ingley, H. A. (2014). High-temperature steam gasification of municipal solid waste, rubber, plastic and wood. Energy & Fuels, 28(7), 4573-4587.
DOI 10.1021/ef500713j
Ma, W., Hoffmann, G., Schirmer, M., Chen, G., & Rotter, V. S. (2010). Chlorine characterization and thermal behavior in MSW and RDF. J. Hazard. Mater., 178(1–3), 489–498.
DOI 10.1016/j.jhazmat.2010.01.108
Malaťák, J., Bradna, J., Velebil, J., Gendek, A., & Ivanova, T. (2018). Evaluation of dried compost for energy use via co-combustion with wood. Agron. Res., 16(1), 157–166.
DOI 10.15159/AR.18.022
Mastufatul, A., Nuris, S., & Pupitasari, N. (2023). Permasalahan Sampah Dan System Pengelolaan Sampah Pasar Tanjung Jember. Jurnal Dakwah Dan Sosial Humaniora, 4(2), 123–135.
DOI 10.59059/tabsyir.v4i2.134
Mateus, M. M., Cecílio, D., Fernandes, M. C., & Neiva Correia, M. J. (2023). Refuse derived fuels as an immediate strategy for the energy transition, circular economy, and sustainability. Bus. Strategy Environ., 32(6), 3915-3926.
DOI 10.1002/bse.3345
MVW Lechtenberg & Partner. (2008). CO2 Emission Factor of Kiln Fuels. In Global Cement Magazine. Pro Publications International Ltd
Nanda, S., & Berruti, F. (2020). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19.
DOI 10.1007/s10311-020-01100-y
Oladejo, A. E., Manuwa, S. I., & Onifade, T. B. (2020). Design and fabrication of a shredder. IOP Conference Series: Earth and Environmental Science, 445(1).
DOI 10.1088/1755-1315/445/1/012001
Paszkowski, J., Domański, M., Caban, J., Zarajczyk, J., Pristavka, M., & Findura, P. (2020). The Use of Refuse Derived Fuel (RDF) in the Power Industry. Agric. Eng., 24(3), 83–90.
DOI 10.1515/agriceng-2020-0029
Rootzén, J., & Johnsson, F. (2017). Managing the costs of CO2 abatement in the cement industry. Clim. Policy, 17(6), 781–800.
DOI 10.1080/14693062.2016.1191007
Sadewo, E. (2018). Dampak Post-Suburbanisasi dan Pertumbuhan Perkotaan di Kawasan Pinggiran Metropolitan Jabodetabek Terhadap Kerentanan Bencana Banjir. Jurnal Green Growth dan Manajemen Lingkungan, 7(1), 1-21.
DOI 10.21009/jgg.071.01
Salamanova, M. S., Aliev, S. A., Murtazaev, S. A. U., Saidumov, M. S., & Gabazov, I. A. (2020). Possible solutions to problems in the cement industry. IOP Conference Series: Materials Science and Engineering, 905(1).
DOI 10.1088/1757-899X/905/1/012058
Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://www.sciencedirect.com/science/article/abs/pii/S0008884619301632
Shao, L. M., Ma, Z. H., Zhang, H., Zhang, D. Q., & He, P. J. (2010). Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Management, 30(7), 1165–1170.
DOI 10.1016/j.wasman.2010.01.011
Siddique, R. (2010). Utilization of municipal solid waste (MSW) ash in cement and mortar. Resour. Conserv. Recycl., 54(12), 1037-1047.
DOI 10.1016/j.resconrec.2010.05.002
Singhal, A., Gupta, A. K., Dubey, B., & Ghangrekar, M. M. (2022). Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J. Air Waste Manag. Assoc., 72(2), 147–160.
DOI 10.1080/10962247.2021.1980450
Świechowski, K., Syguła, E., Koziel, J. A., Stępień, P., Kugler, S., Manczarski, P., & Białowiec, A. (2020). Low-temperature pyrolysis of municipal solid waste components and refuse-derived fuel—Process efficiency and fuel properties of carbonized solid fuel. Data, 5(2), 48.
DOI 10.3390/data5020048
Tihin, G. L., Mo, K. H., Onn, C. C., Ong, H. C., Taufiq-Yap, Y. H., & Lee, H. V. (2023). Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing. Alex. Eng. J., 84, 153-174.
DOI 10.1016/j.aej.2023.10.043
Tun, M. M., & Juchelková, D. (2019). Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environ. Eng. Res., 24(4), 529-542.
DOI 10.4491/eer.2018.327
Tursunov, O., Dobrowolski, J., & Nowak, W. (2015). Catalytic Energy Production from Municipal Solid Waste Biomass: Case Study in Perlis-Malaysia. World J. Environ. Eng., 3(1), 7–14.
DOI 10.12691/wjee-3-1-2
UNI EN 15400: 2011. Solid Recovered Fuels – Determination of Calorific Value
UNI EN 15403: 2011. Solid Recovered Fuels. Determination of Ash Content
UNI EN 15407: 2011. Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen
UNI EN 15414-3: 2011. Solid Recovered Fuels. Determination of Moisture Content using the Oven Dry Method. Moisture in General Analysis Sample
Wang, X., Mikulčić, H., Dai, G., Zhang, J., Tan, H., & Vujanović, M. (2021). Decrease of high-carbon-ash landfilling by its Co-firing inside a cement calciner. J. Clean. Prod., 293, 126090.
DOI 10.1016/j.jclepro.2021.126090
Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198.
DOI 10.1016/j.energy.2020.117352
Wirosoedarmo, R., Haji, A. T. S., & Hidayati, E. A. (2018). Pengaruh konsentrasi dan waktu kontak pada pengolahan limbah domestik menggunakan karbon aktif tongkol jagung untuk menurunkan BOD dan COD. Jurnal Sumberdaya Alam dan Lingkungan, 3(2), 31-38
World Bank. (2020). An Evaluation of the World Bank Group’s Support to Municipal Solid Waste Management, 2010–20. https://ieg.worldbankgroup.org/sites/default/files/Data/reports/ap_municipalsolidwaste.pdf
Zagaria, L., Caramia, G., & Amirante, R. (2023). The role of biomass in energy transition to net zero carbon emissions due to climate change: the Apulia case. Journal of Physics: Conference Series, 2648(1).
DOI 10.1088/1742-6596/2648/1/012013
Zamrudy, W., Santosa, S., Budiono, A., & Naryono, E. (2019). A review of Drying Technologies for Refuse Derived Fuel (RDF) and Possible Implementation for Cement Industry. Int. J. Chemtech Res., 12(01), 307–315.
DOI 10.20902/ijctr.2019.120137
Zhang, Y., Kusch-Brandt, S., Gu, S., & Heaven, S. (2019). Particle size distribution in municipal solid waste pre-treated for bioprocessing. Resources, 8(4).
DOI 10.3390/resources8040166
Zhao, L., Giannis, A., Lam, W. Y., Lin, S. X., Yin, K., Yuan, G. A., & Wang, J. Y. (2016). Characterization of Singapore RDF resources and analysis of their heating value. Sustain. Environ. Res., 26(1), 51–54.
DOI 10.1016/j.serj.2015.09.003
Zhen, Z., Zhang, H., Yan, M., Wu, A., Lin, X., Susanto, H., ... & Li, X. (2019). Experimental study on characteristics of municipal solid waste (MSW) in typical cites of Indonesia. Progress in Energy & Fuels, 8(1), 13-25.
DOI 10.18282/pef.v8i1.716
Zhou, H., Long, Y., Meng, A., Li, Q., & Zhang, Y. (2015). Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel, 145, 151–157.
DOI 10.1016/j.fuel.2014.12.015
Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev., 36, 107–122.
DOI 10.1016/j.rser.2014.04.024
Jamie Mae Chee Tan, Amirhomayoun Saffarzadeh and Takayuki Shimaoka
Published 26 Aug 2024Ana Ramos
Published 26 Aug 2024Giovanni Beggio and Pierre Hennebert
Published 26 Aug 2024Title | Support | Price |
---|