an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

MSW-TO-RDF CONVERSION FOR CEMENT PLANT IN INDONESIA THROUGH PILOT PROJECT AND MODELING

  • Muhammad Angga Kusuma - Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
  • Abdallah Nassour - Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
  • Michael Nelles - Faculty of Agriculture and Environmental Sciences, University of Rostock, Germany

Released under CC BY-NC-ND

Copyright: © 2024 CISA Publisher


Abstract

Aiming for sustainable MSW and cement industry practices, this study assessed the conversion of municipal solid waste (MSW) to refuse-derived fuel (RDF) in four major Indonesian areas. Physical and chemical properties, particle size distribution, and MSW fraction analysis were performed to characterize the MSW before utilizing the MSW for the pilot project. In the pilot project, MSW was shredded and separated to produce RDF and low-grade RDF. RDF produced was quantified, and the output was analyzed to determine the RDF quality. RDF modeling was set based on the pilot project outcome, where the potential quantity, analysis, and feasibility were evaluated. The analysis revealed a need for better MSW processing due to a low heating value (LHV) of 5.4 MJ/kg and high moisture content (MC) of 52-57%. Combustible materials were found to be crucial for RDF quality. A pilot processing 1,000 Mg of MSW resulted in RDF with an LHV of 8.7 MJ/kg and MC of 47% and low-grade RDF with an LHV of 3.0 MJ/kg and MC of 61%, highlighting the importance of drying phase to meet quality standards. The modeling incorporated a two-step drying process, including hot gas utilization at the cement plant. 13 RDF units processing 6,500 MSW Mg/day were needed to produce 3100 Mg/day of RDF (equal to 50% fuel substitution), which could significantly reduce CO2 emissions and MSW by 45% in Jakarta and its neighboring cities, marking an effort for eco-friendlier cement manufacturing.

Keywords


Editorial History

  • Received: 16 Apr 2024
  • Revised: 03 Jul 2024
  • Accepted: 26 Jul 2024
  • Available online: 26 Aug 2024

References

Alfè, M., Gargiulo, V., Porto, M., Migliaccio, R., Le Pera, A., Sellaro, M., Pellegrino, C., Abe, A. A., Urciuolo, M., Caputo, P., Calandra, P., Loise, V., Rossi, C. O., & Ruoppolo, G. (2022). Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision. Molecules, 27(23), 8114.
DOI 10.3390/molecules27238114

Al-Hajaya, M., Aljbour, S. H., Al-Hamaiedeh, H., Abuzaid, M., El-Hasan, T., Hemidat, S., & Nassour, A. (2021). Investigation of Energy Recovery from Municipal Solid Waste: A Case Study of Al-Karak City / Jordan. Civil and Environmental Engineering, 17(2), 610–620.
DOI 10.2478/cee-2021-0061

Amen, R., Hameed, J., Albashar, G., Kamran, H. W., Hassan Shah, M. U., Zaman, M. K. U., Mukhtar, A., Saqib, S., Ch, S. I., Ibrahim, M., Ullah, S., Al-Sehemi, A. G., Ahmad, S. R., Klemeš, J. J., Bokhari, A., & Asif, S. (2021). Modelling the higher heating value of municipal solid waste for assessment of waste-to-energy potential: A sustainable case study. J. Clean. Prod., 287.
DOI 10.1016/j.jclepro.2020.125575

BMUV. (2023). Waste Management in Germany 2023 – Facts, data, figures. Bundesministerium Für Umwelt, Naturschutz, Nukleare Sicherheit Und Verbraucherschutz (Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection). www.bmuv.de/en/publications

Boumanchar, I., Chhiti, Y., Ezzahrae, F., Alaoui, M., El, A., Sahibed-dine, A., Bentiss, F., Jama, C., Bensitel, M., 2016. Effect of materials mixture on the higher heating value: case of biomass, biochar and municipal solid waste. Waste Manage.
DOI 10.1016/j.wasman.2016.11.012

BPS Jakarta. (2023). Jakarta City Statistic. Badan Pusat Statistik Kota Jakarta (Central Statistics Bureau of Jakarta City). https://jakarta.bps.go.id/indicator/12/1270/1/jumlah-penduduk-menurut-kabupaten-kota-di-provinsi-dki-jakarta-.html

Brás, I., Silva, M. E., Lobo, G., Cordeiro, A., Faria, M., & de Lemos, L. T. (2017). Refuse derived fuel from municipal solid waste rejected fractions-a case study. Energy Procedia, 120, 349-356.
DOI 10.1016/j.egypro.2017.07.227

Cembureau. (2023). Reaching Climate Neutrality Along The Cement And Concrete Value Chain By 2050 Cementing The European Green Deal. European Cement Association. https://cembureau.eu/media/w0lbouva/cembureau-2050-roadmap_executive-summary_final-version_web.pdf

Cheng, S., Ding, X., Dong, X., Zhang, M., Tian, X., Liu, Y., Huang, Y., & Jin, B. (2023). Immigration, transformation, and emission control of sulfur and nitrogen during gasification of MSW: Fundamental and engineering review. Carbon Resour. Convers., 6(3), 184–204.
DOI 10.1016/j.crcon.2023.03.003

Conceição, S., & Rolim, J. (2019). Using Waste Heat to Dry RDF: a Technical and Environmental Assessment of the Low Temperature Belt Dryer Technology. Environmental Management and Sustainable Development, 8(2), 113.
DOI 10.5296/emsd.v8i2.14441

Dharmendra. (2022). Organic waste: generation, composition and valorisation. In C. Hussain and S. Hait (Eds.), Advanced Organic Waste Management: Sustainable Practices and Approaches (pp. 3-15). Elsevier.
DOI 10.1016/C2020-0-02931-2

Drudi, K. C. R., Drudi, R., Martins, G., Antonio, G. C., & Leite, J. T. C. (2019). Statistical model for heating value of municipal solid waste in Brazil based on gravimetric composition. Waste Management, 87, 782–790.
DOI 10.1016/j.wasman.2019.03.012

EN ISO 21640:2021. (2021). Standards Publication Solid Recovered Fuels—Specifications and Classes

Fatimah, Y. A., Govindan, K., Murniningsih, R., & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. J. Clean. Prod., 269, 122263.
DOI 10.1016/j.jclepro.2020.122263

Gadaleta, G., De Gisi, S., Todaro, F., & Notarnicola, M. (2022). Environmental Comparison of Different Mechanical–Biological Treatment Plants by Combining Life Cycle Assessment and Material Flow Analysis. Clean Technologies, 4(2), 380–394.
DOI 10.3390/cleantechnol4020023

He, T., Niu, D., Chen, G., Wu, F., & Chen, Y. (2022). Exploring Key Components of Municipal Solid Waste in Prediction of Moisture Content in Different Functional Areas Using Artificial Neural Network. Sustainability (Switzerland), 14(23).
DOI 10.3390/su142315544

Indocement. (2022). 2022 Sustainability Report [White paper]. PT Indocement Tunggal Prakarsa Tbk. https://www.indocement.co.id/resource/03.%20Investor/3.8.2%20Laporan%20Keberlanjutan/2022-Laporan%20Keberlanjutan-INTP.pdf

Indocement. (2024). Co-processing data in PT Indocement Tunggal Prakarsa Tbk. PT Indocement Tunggal Prakarsa Tbk

Ismail, T. M., Yoshikawa, K., Sherif, H., Salah, M., & Saeed, S. (2019). Assessment of Thermal Treatment for Windrow Drying Process of Refuse-Derived Fuel (RDF): A Case Study. Detritus, (5).
DOI 10.31025/2611-4135/2019.13781

Juhrich, K. (2022). CO2 Emission Factors for Fossil Fuels. German Environment Agency. https://www.umweltbundesamt.de/en/publikationen/co2-emission-factors-for-fossil-fuels-0

Kang, S., Kim, S., Lee, D., Lee, J., Kim, K. H., & Jeon, E. C. (2017). The study on biomass fraction estimation for waste incinerated in Korea: A case study. Sustainability (Switzerland), 9(4).
DOI 10.3390/su9040511

Kemenperin. (2022). Industrial Green House Gases in Indonesia. Kementerian Perindustrian Republik Indonesia (Ministry of Industry of Republic Indonesia). http://bskji.kemenperin.go.id/wp-content/uploads/2023/03/LAPTRI-I-2022_PIH.pdf

KLHK. (2023). Waste Figure in Indonesia. Kementerian Lingkungan Hidup Republik Indonesia (Ministry of Environment & Forestry Republic of Indonesia). https://sipsn.menlhk.go.id/sipsn/

Komilis, D., Evangelou, A., Giannakis, G., & Lymperis, C. (2012). Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Manage, 32(3), 372–381.
DOI 10.1016/j.wasman.2011.10.034

Komilis, D., Kissas, K., & Symeonidis, A. (2014). Effect of organic matter and moisture on the calorific value of solid wastes: An update of the Tanner diagram. Waste Management, 34(2), 249–255.
DOI 10.1016/j.wasman.2013.09.023

Lee, U., Chung, J. N., & Ingley, H. A. (2014). High-temperature steam gasification of municipal solid waste, rubber, plastic and wood. Energy & Fuels, 28(7), 4573-4587.
DOI 10.1021/ef500713j

Ma, W., Hoffmann, G., Schirmer, M., Chen, G., & Rotter, V. S. (2010). Chlorine characterization and thermal behavior in MSW and RDF. J. Hazard. Mater., 178(1–3), 489–498.
DOI 10.1016/j.jhazmat.2010.01.108

Malaťák, J., Bradna, J., Velebil, J., Gendek, A., & Ivanova, T. (2018). Evaluation of dried compost for energy use via co-combustion with wood. Agron. Res., 16(1), 157–166.
DOI 10.15159/AR.18.022

Mastufatul, A., Nuris, S., & Pupitasari, N. (2023). Permasalahan Sampah Dan System Pengelolaan Sampah Pasar Tanjung Jember. Jurnal Dakwah Dan Sosial Humaniora, 4(2), 123–135.
DOI 10.59059/tabsyir.v4i2.134

Mateus, M. M., Cecílio, D., Fernandes, M. C., & Neiva Correia, M. J. (2023). Refuse derived fuels as an immediate strategy for the energy transition, circular economy, and sustainability. Bus. Strategy Environ., 32(6), 3915-3926.
DOI 10.1002/bse.3345

MVW Lechtenberg & Partner. (2008). CO2 Emission Factor of Kiln Fuels. In Global Cement Magazine. Pro Publications International Ltd

Nanda, S., & Berruti, F. (2020). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19.
DOI 10.1007/s10311-020-01100-y

Oladejo, A. E., Manuwa, S. I., & Onifade, T. B. (2020). Design and fabrication of a shredder. IOP Conference Series: Earth and Environmental Science, 445(1).
DOI 10.1088/1755-1315/445/1/012001

Paszkowski, J., Domański, M., Caban, J., Zarajczyk, J., Pristavka, M., & Findura, P. (2020). The Use of Refuse Derived Fuel (RDF) in the Power Industry. Agric. Eng., 24(3), 83–90.
DOI 10.1515/agriceng-2020-0029

Rootzén, J., & Johnsson, F. (2017). Managing the costs of CO2 abatement in the cement industry. Clim. Policy, 17(6), 781–800.
DOI 10.1080/14693062.2016.1191007

Sadewo, E. (2018). Dampak Post-Suburbanisasi dan Pertumbuhan Perkotaan di Kawasan Pinggiran Metropolitan Jabodetabek Terhadap Kerentanan Bencana Banjir. Jurnal Green Growth dan Manajemen Lingkungan, 7(1), 1-21.
DOI 10.21009/jgg.071.01

Salamanova, M. S., Aliev, S. A., Murtazaev, S. A. U., Saidumov, M. S., & Gabazov, I. A. (2020). Possible solutions to problems in the cement industry. IOP Conference Series: Materials Science and Engineering, 905(1).
DOI 10.1088/1757-899X/905/1/012058

Schneider, M. (2019). The cement industry on the way to a low-carbon future. Cement and Concrete Research, 124, 105792. https://www.sciencedirect.com/science/article/abs/pii/S0008884619301632

Shao, L. M., Ma, Z. H., Zhang, H., Zhang, D. Q., & He, P. J. (2010). Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Management, 30(7), 1165–1170.
DOI 10.1016/j.wasman.2010.01.011

Siddique, R. (2010). Utilization of municipal solid waste (MSW) ash in cement and mortar. Resour. Conserv. Recycl., 54(12), 1037-1047.
DOI 10.1016/j.resconrec.2010.05.002

Singhal, A., Gupta, A. K., Dubey, B., & Ghangrekar, M. M. (2022). Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. J. Air Waste Manag. Assoc., 72(2), 147–160.
DOI 10.1080/10962247.2021.1980450

Świechowski, K., Syguła, E., Koziel, J. A., Stępień, P., Kugler, S., Manczarski, P., & Białowiec, A. (2020). Low-temperature pyrolysis of municipal solid waste components and refuse-derived fuel—Process efficiency and fuel properties of carbonized solid fuel. Data, 5(2), 48.
DOI 10.3390/data5020048

Tihin, G. L., Mo, K. H., Onn, C. C., Ong, H. C., Taufiq-Yap, Y. H., & Lee, H. V. (2023). Overview of municipal solid wastes-derived refuse-derived fuels for cement co-processing. Alex. Eng. J., 84, 153-174.
DOI 10.1016/j.aej.2023.10.043

Tun, M. M., & Juchelková, D. (2019). Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environ. Eng. Res., 24(4), 529-542.
DOI 10.4491/eer.2018.327

Tursunov, O., Dobrowolski, J., & Nowak, W. (2015). Catalytic Energy Production from Municipal Solid Waste Biomass: Case Study in Perlis-Malaysia. World J. Environ. Eng., 3(1), 7–14.
DOI 10.12691/wjee-3-1-2

UNI EN 15400: 2011. Solid Recovered Fuels – Determination of Calorific Value

UNI EN 15403: 2011. Solid Recovered Fuels. Determination of Ash Content

UNI EN 15407: 2011. Solid recovered fuels - Methods for the determination of carbon (C), hydrogen (H) and nitrogen

UNI EN 15414-3: 2011. Solid Recovered Fuels. Determination of Moisture Content using the Oven Dry Method. Moisture in General Analysis Sample

Wang, X., Mikulčić, H., Dai, G., Zhang, J., Tan, H., & Vujanović, M. (2021). Decrease of high-carbon-ash landfilling by its Co-firing inside a cement calciner. J. Clean. Prod., 293, 126090.
DOI 10.1016/j.jclepro.2021.126090

Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198.
DOI 10.1016/j.energy.2020.117352

Wirosoedarmo, R., Haji, A. T. S., & Hidayati, E. A. (2018). Pengaruh konsentrasi dan waktu kontak pada pengolahan limbah domestik menggunakan karbon aktif tongkol jagung untuk menurunkan BOD dan COD. Jurnal Sumberdaya Alam dan Lingkungan, 3(2), 31-38

World Bank. (2020). An Evaluation of the World Bank Group’s Support to Municipal Solid Waste Management, 2010–20. https://ieg.worldbankgroup.org/sites/default/files/Data/reports/ap_municipalsolidwaste.pdf

Zagaria, L., Caramia, G., & Amirante, R. (2023). The role of biomass in energy transition to net zero carbon emissions due to climate change: the Apulia case. Journal of Physics: Conference Series, 2648(1).
DOI 10.1088/1742-6596/2648/1/012013

Zamrudy, W., Santosa, S., Budiono, A., & Naryono, E. (2019). A review of Drying Technologies for Refuse Derived Fuel (RDF) and Possible Implementation for Cement Industry. Int. J. Chemtech Res., 12(01), 307–315.
DOI 10.20902/ijctr.2019.120137

Zhang, Y., Kusch-Brandt, S., Gu, S., & Heaven, S. (2019). Particle size distribution in municipal solid waste pre-treated for bioprocessing. Resources, 8(4).
DOI 10.3390/resources8040166

Zhao, L., Giannis, A., Lam, W. Y., Lin, S. X., Yin, K., Yuan, G. A., & Wang, J. Y. (2016). Characterization of Singapore RDF resources and analysis of their heating value. Sustain. Environ. Res., 26(1), 51–54.
DOI 10.1016/j.serj.2015.09.003

Zhen, Z., Zhang, H., Yan, M., Wu, A., Lin, X., Susanto, H., ... & Li, X. (2019). Experimental study on characteristics of municipal solid waste (MSW) in typical cites of Indonesia. Progress in Energy & Fuels, 8(1), 13-25.
DOI 10.18282/pef.v8i1.716

Zhou, H., Long, Y., Meng, A., Li, Q., & Zhang, Y. (2015). Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel, 145, 151–157.
DOI 10.1016/j.fuel.2014.12.015

Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew. Sustain. Energy Rev., 36, 107–122.
DOI 10.1016/j.rser.2014.04.024