Released under All rights reserved
Copyright: © 2024 CISA Publisher
Alibardi, L., & Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147-155.
DOI 10.1016/j.wasman.2014.11.019
André, L., Ndiaye, M., Pernier, M., Lespinard, O., Pauss, A., Lamy, E., & Ribeiro, T. (2016). Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations. Bioresource technology, 207, 353-360.
DOI 10.1016/j.biortech.2016.02.033
André, L., Pauss, A., & Ribeiro, T. (2017). A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support. Bioprocess and biosystems engineering, 40(3), 473-478.
DOI 10.1007/s00449-016-1704-8
André, L., Pauss, A., & Ribeiro, T. (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource technology, 247, 1027-10373.
DOI 10.1016/j.biortech.2017.09.003
Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., ... & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water science and technology, 59(5), 927-934.
DOI 10.2166/wst.2009.040
Arhoun, B., Villen-Guzman, M., Gomez-Lahoz, C., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., & Vereda-Alonso, C. (2019). Anaerobic co-digestion of mixed sewage sludge and fruits and vegetable wholesale market waste: Composition and seasonality effect. Journal of Water Process Engineering, 31, 100848.
DOI 10.1016/j.jwpe.2019.100848
Awhangbo, L., Bendoula, R., Roger, J. M., & Béline, F. (2020). Detection of early imbalances in semi-continuous anaerobic co-digestion process based on instantaneous biogas production rate. Water Research, 171, 115444.
DOI 10.1016/j.watres.2019.115444
Bona, D.; Beggio, G.; Weil, T.; Scholz, M.; Bertolini, S.; Grandi, L.; Baratieri, M.; Schievano, A.; Silvestri, S.; Pivato, A. (2020). Effects of woody biochar on dry thermophilic anaerobic digestion of organic fraction of municipal solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 267: 110633.
DOI 10.1016/j.jenvman.2020.110633
Brown, D., Shi, J., & Li, Y. (2012). Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresource technology, 124, 379-386.
DOI 10.1016/j.biortech.2012.08.051
Cruz, I. A., Andrade, L. R., Bharagava, R. N., Nadda, A. K., Bilal, M., Figueiredo, R. T., & Ferreira, L. F. (2021). An overview of process monitoring for anaerobic digestion. Biosystems Engineering, 207, 106-119.
DOI 10.1016/j.biosystemseng.2021.04.008
EBA. European Biogas Association. Statistical report 2023
Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J. M., Flotats, X., & de Mendonça Costa, M. S. S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Management, 71, 618-625.
DOI 10.1016/j.wasman.2017.05.030
European Environmental Agency. Bio-waste in Europe turning challenges into opportunities. EEA Report N° 4/2020. https://www.eea.europa.eu/publications/bio-waste-in-europe (Accessed on 14th Novembre 2024)
Filer, J., Ding, H. H., & Chang, S. (2019). Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water, 11(5), 921.
DOI 10.3390/w11050921
Fisgativa, H., Tremier, A., & Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste management, 50, 264-274.
DOI 10.1016/j.wasman.2016.01.041
Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass and bioenergy, 26(4), 389-399.
DOI 10.1016/j.biombioe.2003.08.006
Hafner, S. D., Fruteau de Laclos, H., Koch, K., & Holliger, C. (2020). Improving inter-laboratory reproducibility in measurement of biochemical methane potential (BMP). Water, 12(6), 1752.
DOI 10.3390/w12061752
Hayyat, U., Khan, M. U., Sultan, M., Zahid, U., Bhat, S. A., & Muzamil, M. (2024). A Review on Dry Anaerobic Digestion: Existing Technologies, Performance Factors, Challenges, and Recommendations. Methane, 3(1), 33-52.
DOI 10.3390/methane3010003
Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., ... & Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515-2522.
DOI 10.2166/wst.2016.336
Holliger, C., Fruteau de Laclos, H., & Hack, G. (2017). Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Frontiers in Energy Research, 5, 12.
DOI 10.3389/fenrg.2017.00012
Kobayashi, T., Xu, K. Q., Li, Y. Y., & Inamori, Y. (2012). Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials and the other carbohydrates. International journal of hydrogen energy, 37(20), 15711-15718.
DOI 10.1016/j.ijhydene.2012.05.044
Koch, K., Lippert, T., & Drewes, J. E. (2017). The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresource technology, 243, 457-463.
DOI 10.1016/j.biortech.2017.06.142
Le Pera, A., Sellaro, M., Migliori, M., Bianco, M., & Zanardi, G. (2021). Dry mesophilic anaerobic digestion of separately collected organic fraction of municipal solid waste: two-year experience in an industrial-scale plant. Processes, 9(2), 213.
DOI 10.3390/pr9020213
Li, C., Nges, I. A., Lu, W., & Wang, H. (2017). Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators. Bioresource technology, 244, 304-312.
DOI 10.1016/j.biortech.2017.07.157
Li, P., Liu, D., Pei, Z., Zhao, L., Shi, F., Yao, Z., ... & Liu, J. (2021). Evaluation of lignin inhibition in anaerobic digestion from the perspective of reducing the hydrolysis rate of holocellulose. Bioresource Technology, 333, 125204.
DOI 10.1016/j.biortech.2021.125204
Li, Y., Zhang, R., Liu, G., Chen, C., He, Y., & Liu, X. (2013). Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource technology, 149, 565-569.
DOI 10.1016/j.biortech.2013.09.063
Mozhiarasi, V., Speier, C. J., Rose, P. B., Mondal, M. M., Pragadeesh, S., Weichgrebe, D., & Srinivasan, S. V. (2019). Variations in generation of vegetable, fruit and flower market waste and effects on biogas production, exergy and energy contents. Journal of Material Cycles and Waste Management, 21, 713-728.
DOI 10.1007/s10163-019-00828-2
Niu, Q., Takemura, Y., Kubota, K., & Li, Y. Y. (2015). Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Management, 43, 114-122.
DOI 10.1016/j.wasman.2015.05.012
Ohemeng-Ntiamoah, J., & Datta, T. (2019). Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Science of the Total Environment, 664, 1052-1062.
DOI 10.1016/j.scitotenv.2019.02.088
Papa, G., Sciarria, T. P., Scaglia, B., & Adani, F. (2022). Diversifying the products from the organic fraction of municipal solid waste (OFMSW) by producing polyhydroxyalkanoates from the liquid fraction and biomethane from the residual solid fraction. Bioresource Technology, 344, 126180.
DOI 10.1016/j.biortech.2021.126180
Pasalari, H., Gholami, M., Rezaee, A., Esrafili, A., & Farzadkia, M. (2021). Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: a systematic review. Chemosphere, 270, 128618.
DOI 10.1016/j.chemosphere.2020.128618
Rocamora, I., Wagland, S. T., Villa, R., Simpson, E. W., Fernández, O., & Bajón-Fernández, Y. (2020). Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource technology, 299, 122681.
DOI 10.1016/j.biortech.2019.122681
Schievano, A., D’Imporzano, G., Salati, S., & Adani, F. (2011). On-field study of anaerobic digestion full-scale plants (Part I): An on-field methodology to determine mass, carbon and nutrients balance. Bioresource technology, 102(17), 7737-7744.
DOI 10.1016/j.biortech.2011.06.006
Sun, C., Liu, F., Song, Z., Wang, J., Li, Y., Pan, Y., ... & Li, L. (2019). Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature. Bioresource technology, 276, 65-73.
DOI 10.1016/j.biortech.2018.12.105
Symons, G. E., & Buswell, A. M. (1933). The methane fermentation of carbohydrates1, 2. Journal of the american chemical society, 55(5), 2028-2036.
DOI 10.1021/ja01332a039
Trujillo-Reyes, Á., Pérez, A. G., Serrano, A., Ramiro-García, J., Cubero-Cardoso, J., & Fermoso, F. G. (2025). Assessment of seasonal feedstock changes in long-term anaerobic digestion: Monoterpenes influence on the microbial consortium. Biomass and Bioenergy, 194, 107674.
DOI 10.1016/j.biombioe.2025.107674
Trujillo-Reyes, Á., Serrano, A., Cubero-Cardoso, J., Fernández-Prior, Á., & Fermoso, F. G. (2022). Does seasonality of feedstock affect anaerobic digestion? Biomass Conversion and Biorefinery, 1-10.
DOI 10.1007/s13399-022-03336-w
VDI 4630 2016 Fermentation of organic materials – Characterization of the substrate, sampling, collection of material data, fermentation tests. VDI- Handbuch Energietechnik
Wang, B., Björn, A., Strömberg, S., Nges, I. A., Nistor, M., & Liu, J. (2017). Evaluating the influences of mixing strategies on the Biochemical Methane Potential test. Journal of environmental management, 185, 54-59.
DOI 10.1016/j.jenvman.2016.10.044
Wang, Z., Hu, Y., Wang, S., Wu, G., & Zhan, X. (2023). A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renewable and Sustainable Energy Reviews, 176, 113208.
DOI 10.1016/j.rser.2023.113208
Wang, Z., Jiang, Y., Wang, S., Zhang, Y., Hu, Y., Hu, Z. H., ... & Zhan, X. (2020). Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. Waste Management, 114, 96-106.
DOI 10.1016/j.wasman.2020.06.048
Wu, D., Li, L., Zhao, X., Peng, Y., Yang, P., & Peng, X. (2019). Anaerobic digestion: A review on process monitoring. Renewable and Sustainable Energy Reviews, 103, 1-12.
DOI 10.1016/j.rser.2018.12.039
Zou, J., Nie, E., Lü, F., Peng, W., Zhang, H., & He, P. (2022). Screening of early warning indicators for full-scale dry anaerobic digestion of household kitchen waste. Environmental Research, 214, 114136.
DOI 10.1016/j.envres.2022.114136
Lorena Figueroa-Escamilla, Simon Gonzalez-Martinez, Rosalinda Campuzano and Idania Valdez-Vazquez
Published 04 Jun 2025Title | Support | Price |
---|