an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

LANDFILL MINING: A CASE STUDY REGARDING SAMPLING, PROCESSING AND CHARACTERIZATION OF EXCAVATED WASTE FROM AN AUSTRIAN LANDFILL

  • Cristina García López - Department of Processing and Recycling, RWTH Aachen University, Germany
  • Bastian Küppers - Chair of Waste Processing Technology and Waste Management, Montanuniversitaet Leoben, Austria
  • Adele Clausen - Department of Processing and Recycling, RWTH Aachen University, Germany
  • Thomas Pretz - Department of Processing and Recycling, RWTH Aachen University, Germany

DOI 10.31025/2611-4135/2018.13664

Released under CC BY-NC-ND

Copyright: © 2018 Cisa Publisher

Editorial History

  • Received: 17 Jan 2018
  • Revised: 14 May 2018
  • Accepted: 24 Jun 2018
  • Available online: 30 Jun 2018

Abstract

The following case study belongs to the New-Mine project and the objective of the project is to develop a new “Enhanced Landfill Mining” (ELFM) scenario for a combined resource-recovery and remediation strategy. This strategy could reduce future remediation costs and reclaim valuable land while simultaneously unlocking valuable resources. In the past, insufficiently reliable data about the composition of landfills, overestimation of the quality of excavated material and poor product marketing of the possible recyclables have resulted in a bad reputation for landfill-mining projects. The ongoing research in the NEW-MINE project shall show that there are possibilities to create valuable outputs from landfills with enhanced treatment processes, such as a better distribution of the different mechanical processes. To create mechanical routes to recover valuable materials from old landfills, it is important to characterize the material, creating a basis for the research. The objective of this case study, executed from November 2016 until June 2017 at the landfill site in Halbenrain (Austria), is to study the efficiency of different sorting technologies with old landfill material. The excavated material was transported and used as feedstock in a configured state-of-the-art mechanical-biological treatment (MBT) plant located next to the landfill. During the mechanical processing, metals and high-calorific fractions were sorted out from the input flow. As a result of the mechanical processing, approx. 3% of the ferrous metals were recovered, approx. 20% of potential RDF (pRDF) was separated and could have been energetically recovered, and approx. 74% belonged to the finer fraction (< 40 mm). Each sample from the sampling campaign was sieved to obtain the particle size distribution. Via manual sorting, the material was classified into plastics, wood, paper, textile, inerts, Fe metal, NF metals, glass/ceramic and residuals. In addition, the moisture (wt%), the ash content (wt%), the calorific value (MJ/kg) and the concentration of heavy metals (%) of the finer fraction (<40 mm) were analysed. The aim of this study is to assess the possibilities of different mechanical processes with landfill mining (LFM) material and to gain information about the characterization of five material flows derived from the mechanical treatment, together with the mass balance of the MBT. Although every landfill has its own characteristics, the results obtained from this case study can help to understand the general potential, contribute to develop methodologies for characterization of old landfill material and identify problematic fields that require further research.

Keywords


References

Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., & Hogland, W. (2017). Hunting for valuables from landfills and assessing their market opportunities A case study with Kudjape landfill in Estonia. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 35(6), 627–635.

Brunner, P. H., & Rechberger, H. (2015). Waste to energy--key element for sustainable waste management. Waste management (New York, N.Y.), 37, 3–12.

Bundesminister für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft verordne (2001). Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über Qualitätsanforderungen an Komposte aus Abfällen (Kompostverordnung): BGBl. II Nr. 292/2001.

EURELCO (2017). NEW MINE – EU Training Network for Resource Recovery Through Enhanced Landfill Mining, from European Union's EU Framework Programme for Research and Innovation Horizon 2020: http://new-mine.eu/.

Eurostat (2014a). Classification of treatments: Directive 75/442/EEC.

Eurostat (2014b). Treatment of waste by waste category, hazardousness and waste operations, from http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wastrt&lang=en.

Ferranti, M. P. (op. 1985). Sorting of household waste and thermal treatment of waste. London: Elsevier.

G. A. Forster (1995). Assessment of Landfill Reclamation and the Effects of Age on the Combustion of Recovered Municipal Solid Waste.

Hernández Parrodi, J. C., Höllen, D., Pomberger, R. (2017). Characterization of fine fractions from landfill mining: A review of previous landfill mining investigations. Proceedings Sardinia 2017.

Hull, R. M., Krogmann, U., & Strom, P. F. (2005). Composition and Characteristics of Excavated Materials from a New Jersey Landfill. Journal of Environmental Engineering, 131(3), 478–490.

Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., & Kihl, A. (2016). Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 34(12), 1292–1299.

Kaartinen, Tommi; Sormunen, Kai; Rintala, Jukka (2013): Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. En: Journal of Cleaner Production 55, pág. 56–66.
DOI 10.1016/j.jclepro.2013.02.036

Kranert, M., & Cord-Landwehr, K. (2010). Einführung in die Abfallwirtschaft (4., vollständig aktualisierte und erw. Aufl.). Vieweg Studium. Wiesbaden: Vieweg + Teubner.

Miller, Logan V., Mackey, Robert E., and Flynt, Jim (1991). “Excavation and Recyling Feasibility Study of a Municipal Solid Waste Landfill Utilizing Leachate Recycle. Report to Post Buckley, Schuh, and Jernigan, Inc and The Delaware Solid Waste Authority.

Ministerium für Umwelt und Forsten Rheinland-Pfalz (Dezember 1983): Grundregeln für die Entnahme von Proben aus Abfällen und abgelagerten Stoffen. Richtlinie für das Vorgehen bei physikalischen und chemischen Untersuchungen im Zusammenhang mit der Beseitigung von Abfällen. LAGA - RL. PN 2/78K.

Ministerium für Umwelt und Forsten Rheinland-Pfalz (Dezember 2001): Richtlinie für das Vorgehen bei physikalischen, chemischen und biologischen Untersuchungen im Zusammenhang mit der Verwertung/Beseitigung von Abfällen. LAGA PN 98.

Mönkäre, T. J., Palmroth, M. R. T., & Rintala, J. A. (2016). Characterization of fine fraction mined from two Finnish landfills. Waste management (New York, N.Y.), 47(Pt A), 34–39.

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83.

Salerni, E.L. (1995). Landfill Reclamation Manual. Reclaim-95-Landfill Mining, 28–29, SWANA Landfill Reclamation Task Group.

Von Stein, E. L., Savage, G. M. (1993). Evaluation of the Collier Country, Florida, Landfill Mining Demostration. EPA/600/R-93/163.

Wolfsberger, T., Aldrian, A., Sarc, R., Hermann, R., Höllen, D., Budischowsky, A., et al. (2015). Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 33(11), 962–974.


feb
23
sep
30