an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Michael Peer - Department of Mechanical Engineering and Environmental Engineering, Technical University of Applied Science, Germany - Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, Germany
  • Burkhard Berninger - Department of Mechanical Engineering and Environmental Engineering, Technical University of Applied Science,, Germany
  • Alexander Hofmann - Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, Germany
  • Thomas Fehn - Fraunhofer UMSICHT, Fraunhofer Institute for Environmental, Safety, and Energy Technology, Germany

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Chemical recycling of polyvinyl chloride containing plastic waste to recover critical metals is a promising way to solve two important problems (polyvinyl chloride disposal and critical metal recovery) in waste management and is being transferred on a larger scale in the “CHM-Technology” project. Various polyvinyl chloride containing plastic wastes were pyrolyzed to generate a hydrogen chloride rich vapor. This hydrogen chloride rich vapor is used in a second step to chlorinate indium in liquid crystal displays. Indium chloride has a lower boiling point than indium-tin-oxide and evaporates. This is cooled down and generates a metal concentrate together with the decomposed volatile materials from liquid crystal displays. The chlorine content in the polyvinyl chloride containing plastic waste residues is reduced. The products solid, oil, hydrochloric acid and gas can be used for new products. For metal purification the metal concentrate is mixed with water, filtrated, distilled and an electrolysis is carried out to recover metallic indium. Nine waste containing PVC were used with significant differences: when more hydrochloric acid and less volatile organic fraction was produced, more indium was transferred to the metal concentrate. The best recovery of indium (78% purity after electrolysis) was 39 wt-% from LCD panels containing 83 mg In/kg.


Editorial History

  • Received: 12 Sep 2023
  • Revised: 16 Mar 2024
  • Accepted: 19 Mar 2024
  • Available online: 31 Mar 2024


Althaf, S. & Babbitt, C. W. (2021). Disruption risks to material supply chains in the electronics sector. Resources, Conservation and Recycling, 167, 105248.
DOI 10.1016/j.resconrec.2020.105248

Berninger, B. & Peer, M. (2022). Plattformtechnologie zur Verwertung chlorhaltiger Abfälle und Rückgewinnung kritischer Metalle – Chlor-Plattform. Disponibile da

Bockhorn, H., Hornung, A. & Hornung, U. (1998). Stepwise pyrolysis for raw material recovery from plastic waste. Journal of Analytical and Applied Pyrolysis, 46(1), 1–13.
DOI 10.1016/S0165-2370(98)00066-7

Awaja, F. & Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453–1477.
DOI 10.1016/j.eurpolymj.2005.02.005

Braun, D. (2002). Recycling of PVC. Progress in Polymer Science, 27(10), 2171–2195.
DOI 10.1016/S0079-6700(02)00036-9

Bundesministerium der Justiz und für Verbraucherschutz. (2009). Verordnung über Deponien und Langzeitlager (Deponieverordnung - DepV) Anhang 3 Zulässigkeits- und Zuordnungskriterien (zu § 2 Nummer 5 bis 9, 23 bis 26, 37, § 6 Absatz 2 bis 5, § 8 Absatz 1, 3, 5 und 8, § 14 Absatz 3, den §§ 15, 23, 25 Absatz 1). Disponibile da

European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Blengini, G., El Latunussa, C., Eynard, U. (2020). Study on the EU’s list of critical raw materials (2020) : critical raw materials factsheets, Publications Office.
DOI 10.2873/92480

Geyer, R. (2020). Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling (pp. 13–32). Elsevier.
DOI 10.1016/B978-0-12-817880-5.00002-5

Geyer, R., Jambeck, J. R. & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782.
DOI 10.1126/sciadv.1700782

Graedel, T. E., Allwood, J., Birat, J.-P., Buchert, M., Hagelüken, C., Reck, B. K., Sonnemann, G. (2011). Recycling rates of metals: A status report. Nairobi, Kenya: United Nations Environment Programme

Hofmann, R. (2021). Preisliste Abfälle. Disponibile da

Hopewell, J., Dvorak, R. & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1526), 2115–2126.
DOI 10.1098/rstb.2008.0311

Liu, W.-J., Tian, K., Jiang, H., Zhang, X.-S. & Yang, G.-X. (2013). Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins. Bioresource technology, 128, 1–7.
DOI 10.1016/j.biortech.2012.10.160

Lokanc, Martin, Eggert, Roderick, & Redlinger, Michael. The Availability of Indium: The Present, Medium Term, and Long Term. United States.
DOI 10.2172/1327212Lu, L., Li, W., Cheng, Y. & Liu, M. (2023). Chemical recycling technologies for PVC waste and PVC-containing plastic waste: A review. Waste management (New York, N.Y.), 166, 245–258

Ma, W., Wenga, T., Frandsen, F. J., Yan, B. & Chen, G. (2020). The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science, 76, 100789.
DOI 10.1016/j.pecs.2019.100789

Maringer, L., Grabmann, M., Muik, M., Nitsche, D., Romanin, C., Wallner, G. & Buchberger, W. (2017). Investigations on the distribution of polymer additives in polypropylene using confocal fluorescence microscopy. International Journal of Polymer Analysis and Characterization, 22(8), 692–698.
DOI 10.1080/1023666X.2017.1367120

Miliute-Plepiene, J., Fråne, A. & Almasi, A. M. (2021). Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 4, 100246.
DOI 10.1016/j.clet.2021.100246

Muhammad, C., Onwudili, J. A. & Williams, P. T. (2015). Catalytic pyrolysis of waste plastic from electrical and electronic equipment. Journal of Analytical and Applied Pyrolysis, 113, 332–339.
DOI 10.1016/j.jaap.2015.02.016

Park, K.-S., Sato, W., Grause, G., Kameda, T. & Yoshioka, T. (2009). Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochimica Acta, 493(1-2), 105–108.
DOI 10.1016/j.tca.2009.03.003

Quicker, P., Seitz, M. & Vogel, J. (2022). Chemical recycling: A critical assessment of potential process approaches. Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA, 40(10), 1494–1504.
DOI 10.1177/0734242X221084044

Sadat-Shojai, M. & Bakhshandeh, G.-R. (2011). Recycling of PVC wastes. Polymer Degradation and Stability, 96(4), 404–415.
DOI 10.1016/j.polymdegradstab.2010.12.001

Scheirs, J. & Kaminsky, W. (Edd.). (2006). Wiley series in polymer science. Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into diesel and other fuels. Chichester, UK, Hoboken, NJ: J. Wiley & Sons. Disponibile da

Schyns, Z. O. G. & Shaver, M. P. (2021). Mechanical Recycling of Packaging Plastics: A Review. Macromolecular rapid communications, 42(3), e2000415.
DOI 10.1002/marc.202000415

Shen, Y., Zhao, R., Wang, J., Chen, X., Ge, X. & Chen, M. (2016). Waste-to-energy: Dehalogenation of plastic-containing wastes. Waste management (New York, N.Y.), 49, 287–303.
DOI 10.1016/j.wasman.2015.12.024

Shibamoto, T., Yasuhara, A. & Katami, T. (2007). Dioxin formation from waste incineration. Reviews of environmental contamination and toxicology, 190, 1–41.
DOI 10.1007/978-0-387-36903-7_1

Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A.,. . . Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1526), 2027–2045.
DOI 10.1098/rstb.2008.0284

VinylPlus. (2015). PVC-Recycling-Technologien. Disponibile da

Wang, Q., Ko, J. H., Liu, F. & Xu, Q. (2021). Leaching characteristics of heavy metals in MSW and bottom ash co-disposal landfills. Journal of hazardous materials, 416, 126042.
DOI 10.1016/j.jhazmat.2021.126042

Zheng, K., Benedetti, M. F. & van Hullebusch, E. D. (2023). Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste) - A review. Journal of environmental management, 347, 119043.
DOI 10.1016/j.jenvman.2023.119043