an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

LIFE CYCLE ASSESSMENT OF SCENARIOS FOR END-OF-LIFE MANAGEMENT OF LITHIUM-ION BATTERIES FROM SMARTPHONES AND LAPTOPS

  • Ana Mariele Domingues - Department of Production Engineering, Sao Paulo State University (UNESP), Brazil
  • Ricardo Gabbay de Souza - Institute of Science and Technology, Sao Paulo State University (UNESP), Brazil - Department of Production Engineering, Sao Paulo State University (UNESP), Brazil
  • Aldo Roberto Ometto - Sao Carlos School of Engineering, Department of Production Engineering, University of Sao Paulo, Brazil
  • Sandro Donnini Mancini - Institute of Science and Technology, São Paulo State University (UNESP), Brazil
  • Flavia Carla dos Santos Martins Padoan - Center for Information Technology Renato Archer (CTI), Brazil
  • Jose Rocha Andrade da Silva - Center for Information Technology Renato Archer (CTI), Brazil

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Abstract

Recycling lithium-ion batteries (LIBs) is a solution to minimise the environmental problems caused by the consumption of natural resources and the generation of hazardous waste. This paper aims to assess the potential environmental impacts and benefits of four scenarios for recycling LIBs from smartphones and laptops using Life Cycle Assessment (LCA). The methodological approach followed four steps: i) scenario modelling representing the current and future situations of LIBs End-of-Life (EoL) management from smartphones and laptops; ii) estimating smartphones, laptops and respective LIBs waste generation; iii) mapping representative recycling options; and iv) assessment of potential environmental impacts using LCA with 16 ILCD midpoint categories. The results revealed that hydrometallurgical recycling in Brazil could be less harmful than pyrohydrometallurgical recycling in Europe in 12 impact categories. The benefits of recycling are mainly of Co and Ni recovery. Results of scenarios indicate that the more optimistic scenario, which includes expanding Reverse Logistics to 50% of collection, internal recycling to 75%, and reducing of LIBs waste sent to landfills in 44%, had the best environmental performance in all 13 impacts categories. For the Climate change category, scenario 4 presents net environmental benefits of -1.83E+05 kgCO2eq while scenarios 1, 2 and 3 do not present a net environmental benefit. Scenarios assessment shows that more significant environmental benefits are achieved when the formal collection rate is increased, and the less impactful technology option makes the recovery of materials. These results can help decision-makers promote the management and recycling more sustainable of LIBs waste.

Keywords


Editorial History

  • Received: 07 Sep 2023
  • Revised: 10 Dec 2023
  • Accepted: 18 Dec 2023
  • Available online: 31 Dec 2023

References

Abbondanza, M. N. M., & Souza, R. G. (2019). Estimating the generation of household e-waste in municipalities using primary data from surveys: A case study of Sao Jose dos Campos, Brazil. Waste Management, 85, 374–384.
DOI 10.1016/J.WASMAN.2018.12.040

Allacker, K., Mathieux, F., Manfredi, S., Pelletier, N., De Camillis, C., Ardente, F., & Pant, R. (2014). Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives. Resources, Conservation and Recycling, 88, 1-12.
DOI 10.1016/j.resconrec.2014.03.016

Amnesty International. (2017). Democratic Republic of the Congo: Time to recharge: Corporate action and inaction to tackle abuses in the cobalt supply chain. Amnesty International, 2017. Retrieved from: https://www.amnesty.org/en/documents/afr62/7395/2017/en/

Arshad, F., Lin, J., Manurkar, N., Fan, E., Ahmad, A., Wu, F., ... & Li, L. (2022). Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resources, Conservation and Recycling, 180, 106164.
DOI 10.1016/j.resconrec.2022.106164

Babbitt, C. W., Madaka, H., Althaf, S., Kasulaitis, B., & Ryen, E. G. (2020). Disassembly-based bill of materials data for consumer electronic products. Scientific Data, 7(1), 1-8.
DOI 10.1038/s41597-020-0573-9

Beinabaj, S. M. H., Heydariyan, H., Aleii, H. M., & Hosseinzadeh, A. (2023). Concentration of heavy metals in leachate, soil, and plants in Tehran’s landfill: Investigation of the effect of landfill age on the intensity of pollution. Heliyon, 9(1). 10.1016/j.heliyon.2023.e13017

Borghesi, G., Stefanini, R., & Vignali, G. (2022). Life cycle assessment of packaged organic dairy product: A comparison of different methods for the environmental assessment of alternative scenarios. Journal of Food Engineering, 318, 110902.
DOI 10.1016/j.jfoodeng.2021.110902

Brazil. (2010). Brazilian National Policy on Solid Waste. Law nº 12.305/2010

Brazil. (2020). WEEE Reverse Logistics Sector Agreement. Decree nº 10.240/2020

Brazilian Electrical and Electronics Industry Association (ABINEE). (2022). Sector Performance: Sector activity. Data updated in march 2022. Retrieved from: http://www.abinee.org.br/abinee/decon/decon15.htm. Date accessed: 10 april 2022

Bauer, C., Burkhardt, S., Dasgupta, N. P., Ellingsen, L. A. W., Gaines, L. L., Hao, H., Hischier, R., Hu, L., Huang, Y., Janek, J., Liang, C., Li, H., Li, J., Li, Y., Lu, Y. C., Luo, W., Nazar, L. F., Olivetti, E. A., Peters, J. F., … Xu, S. (2022). Charging sustainable batteries. Nature Sustainability 2022 5:3, 5(3), 176–178.
DOI 10.1038/s41893-022-00864-1

Bobba, S., Mathieux, F., Ardente, F., Blengini, G. A., Cusenza, M. A., Podias, A., & Pfrang, A. (2018). Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows. Journal of Energy Storage, 19, 213–225.
DOI 10.1016/J.EST.2018.07.008

Boyden, A., Soo, V. K., & Doolan, M. (2016). The Environmental Impacts of Recycling Portable Lithium-Ion Batteries. Procedia CIRP, 48, 188–193.
DOI 10.1016/J.PROCIR.2016.03.100

Cabral-Neto, J.P., de Mendonça Pimentel, R.M., Santos, S.M. et al. (2022). Estimation of lithium-ion battery scrap generation from electric vehicles in Brazil. Environ Sci Pollut Res.
DOI 10.1007/s11356-022-23730-1

Chen, Q., Lai, X., Hou, Y., Gu, H., Lu, L., Liu, X., ... & Zheng, Y. (2023). Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China. Separation and Purification Technology, 308, 122966.
DOI 10.1016/j.seppur.2022.122966

Coelho, L. M. G., & Lange, L. C. (2018). Applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. Resources, Conservation and Recycling, 128, 438–450.
DOI 10.1016/J.RESCONREC.2016.09.026

Cordella, M., Alfieri, F., & Sanfelix, J. (2021). Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones. Journal of Industrial Ecology, 25(2), 448–464.
DOI 10.1111/JIEC.13119

Costa, R. C. (2010). Reciclagem de baterias de íons de lítio por processamento mecânico. 2010. Dissertação de Mestrado - Escola de Engenharia - UFGRS, 2010. Retrieved from: https://www.lume.ufrgs.br/handle/10183/28071

Cusenza, M. A., Bobba, S., Ardente, F., Cellura, M., & Di Persio, F. (2019). Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. Journal of cleaner production, 215, 634-649.
DOI 10.1016/j.jclepro.2019.01.056

Cusenza, M. A., Cellura, M., Guarino, F., & Longo, S. (2021). Life cycle environmental assessment of energy valorization of the residual agro-food industry. Energies, 14(17), 5491.
DOI 10.3390/en14175491

Dai, Q., Kelly, J. C., Gaines, L., & Wang, M. (2019). Life cycle analysis of lithium-ion batteries for automotive applications. Batteries, 5(2), 48.
DOI 10.3390/batteries5020048

Dias, P., Machado, A., Huda, N., & Bernardes, A. M. (2018). Waste electric and electronic equipment (WEEE) management: A study on the Brazilian recycling routes. Journal of Cleaner Production, 174, 7–16.
DOI 10.1016/J.JCLEPRO.2017.10.219

Doka G. (2023) Guidance on how to consider waste disposal in inventories of waste-producing activities. Doka Life Cycle Assessments, Zurich, Switzerland. Commissioned by Swiss Federal Office for the Environment (FOEN), Berne, Switzerland. May 2023. Available at http://www.doka.ch/publications.htm

Duarte Castro, F., Cutaia, L., & Vaccari, M. (2021). End-of-life automotive lithium-ion batteries (LIBs) in Brazil: Prediction of flows and revenues by 2030. Resources, Conservation and Recycling, 169, 105522.
DOI 10.1016/J.RESCONREC.2021.105522

Duarte Castro, F., Xavier, B. G., do Carmo Cardeal, J. A., Perpétuo, B. M. P., Lopes, L. G., da Silva, J. L., ... & Vaccari, M. (2022). The (un) shared responsibility in the reverse logistics of portable batteries: A Brazilian case. Waste Management, 154, 49-63.
DOI 10.1016/j.wasman.2022.09.021

Ducoli, S., Fahimi, A., Mousa, E., Ye, G., Federici, S., Frontera, P., & Bontempi, E. (2022). ESCAPE approach for the sustainability evaluation of spent lithium-ion batteries recovery: Dataset of 33 available technologies. Data in Brief, 42, 108018.
DOI 10.1016/J.DIB.2022.108018

Dunn, J., Kendall, A., & Slattery, M. (2022). Electric vehicle lithium-ion battery recycled content standards for the US–targets, costs, and environmental impacts. Resources, Conservation and Recycling, 185, 106488.
DOI 10.1016/j.resconrec.2022.106488

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B. The ecoinvent database version 3

Ercan, M., Malmodin, J., Bergmark, P., Kimfalk, E., & Nilsson, E. (2016). Life cycle assessment of a smartphone. In ICT for Sustainability 2016 (pp. 124-133). Atlantis Press

European Commission. (2020). Regulation of the European Parliament and of the Council: concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020

European Commission - Joint Research Centre - Institute for Environment and Sustainability. (2010). International Reference Life Cycle Data System (ILCD) Handbook. European Commission

European Commission, Joint Research Centre, Institute for Environment and Sustainability. (2012). Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. EUR 25167. Luxembourg. Publications Office of the European Union

European Patent EP 2 450 991 B1-2011. (2013). Plant and process for the treatment of exhausted accumulators and batteries. Retrieved from: https://worldwide.espacenet.com/patent/search/family/043738310/publication/EP2450991B1?q=pn%3DEP2450991A1

Environmental Protection Agency’s (EPA). (2020). Recycling Economic Information (REI) Report. Retrieved from: https://www.epa.gov/smm/recycling-economic-information-rei-report. Date accessed: 05 december 2022

Fahimi, A., Ducoli, S., Federici, S., Ye, G., Mousa, E., Frontera, P., & Bontempi, E. (2022). Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint. Journal of Cleaner Production, 338, 130493


DOI 10.1016/J.JCLEPRO.2022.130493

Ferrara, C., Ruffo, R., Quartarone, E., & Mustarelli, P. (2021). Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling. Advanced Energy and Sustainability Research, 2(10), 2100047.
DOI 10.1002/AESR.202100047

Fisher, K., Wallén, E., Laenen, P. P., & Collins, M. (2006). Battery waste management life cycle assessment. Environmental Resources Management ERM, Ltd

Gaines, L., Richa, K., & Spangenberger, J. (2018). Key issues for Li-ion battery recycling. MRS Energy & Sustainability, 5(1).
DOI 10.1557/MRE.2018.13

Granata, G., Moscardini, E., Pagnanelli, F., Trabucco, F., & Toro, L. (2012). Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations. Journal of Power Sources, 206, 393–401.
DOI 10.1016/J.JPOWSOUR.2012.01.115

Hanicke, M., Ibrahim, D., Jautelat, S., Rijt, A. V., Linder, M., & Shaufuss, P. (2023). Battery 2030: Resilient, sustainable, and circular. Mckinsey & Company and Global Battery Alliance. Retrieved from: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular#/

Hao, H., Qiao, Q., Liu, Z., & Zhao, F. (2017). Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resources, Conservation and recycling, 122, 114-125.
DOI 10.1016/j.resconrec.2017.02.005

Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Walton, A., Christensen, P., Heidrich, O., Lambert, S., Abbott, A., Ryder, K., Gaines, L., & Anderson, P. (2019). Recycling lithium-ion batteries from electric vehicles. Nature 2019 575:7781, 575(7781), 75–86.
DOI 10.1038/s41586-019-1682-5

Herreras-Martínez, L., Anta, M., Bountis, R. et al. (2021). Recommendations for tackling fires caused by lithium batteries in WEEE- A report of the Batteries Roundtable. Retrieved from:https://weee-forum.org/wp-content/uploads/2021/07/Tackling-fires-caused-by-batteries-in-e-waste.pdf. Date accessed: 05 december 2022

Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C., & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478, 228753.
DOI 10.1016/J.JPOWSOUR.2020.228753

Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2016). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment 2016 22:2, 22(2), 138–147.
DOI 10.1007/S11367-016-1246-Y

Ingemarsdotter, E., Dumont, M. (2022).Why the circular economy and LCA make each other stronger. Pre Sustainability. Retrieved from: https://pre-sustainability.com/articles/the-circular-economy-and-lca-make-each-other-stronger/. Date accessed: 05 december 2022

ISO. (2006a). Environmental Management–Life Cycle Assessment – General Principles and Framework. ISO 14040. ISO, Geneva

ISO. (2006b). Environmental management — Life cycle assessment — Requirements and guidelines. ISO 14044. ISO, Geneva

Jaafarzadeh, N., Ahmadmoazzam, M., Kojloo, R., Jorfi, S., & Baasim, Y. (2021). The environmental performance of four municipal solid waste management scenarios: A life cycle assessment study. Environmental Quality Management, 31(2), 77–84.
DOI 10.1002/TQEM.21719

Jin, S., Mu, D., Lu, Z., Li, R., Liu, Z., Wang, Y., Tian, S., & Dai, C. (2022). A comprehensive review on the recycling of spent lithium-ion batteries: Urgent status and technology advances. Journal of Cleaner Production, 340, 130535.
DOI 10.1016/J.JCLEPRO.2022.130535

Kasulaitis, B. V., Babbitt, C. W., Kahhat, R., Williams, E., & Ryen, E. G. (2015). Evolving materials, attributes, and functionality in consumer electronics: Case study of laptop computers. Resources, conservation and recycling, 100, 1-10


DOI 10.1016/j.resconrec.2015.03.014

Kilgo, M. K., Anctil, A., Kennedy, M. S., & Powell, B. A. (2022). Metal leaching from Lithium-ion and Nickel-metal hydride batteries and photovoltaic modules in simulated landfill leachates and municipal solid waste materials. Chemical Engineering Journal, 431, 133825


DOI 10.1016/j.cej.2021.133825

Kim, S., Bang, J., Yoo, J., Shin, Y., Bae, J., Jeong, J., ... & Kwon, K. (2021). A comprehensive review on the pretreatment process in lithium-ion battery recycling. Journal of Cleaner Production, 294, 126329.
DOI 10.1016/j.jclepro.2021.126329

Kirkeby, J. T., Birgisdottir, H., Bhander, G. S., Hauschild, M., & Christensen, T. H. (2007). Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE. Waste management, 27(7), 961-970.
DOI 10.1016/j.wasman.2006.06.017

Larouche, F., Tedjar, F., Amouzegar, K., Houlachi, G., Bouchard, P., Demopoulos, G. P., & Zaghib, K. (2020). Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, Vol. 13, Page 801, 13(3), 801.
DOI 10.3390/MA13030801

Latini, D., Vaccari, M., Lagnoni, M., Orefice, M., Mathieux, F., Huisman, J., ... & Bertei, A. (2022). A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. Journal of Power Sources, 546, 231979.
DOI 10.1016/j.jpowsour.2022.231979

Laurent, A., Weidema, B. P., Bare, J., Liao, X., Maia de Souza, D., Pizzol, M., Sala, S.,Schreiber, H., Thonemann, N., & Verones, F. (2020). Methodological review and detailed guidance for the life cycle interpretation phase. Journal of Industrial Ecology, 24(5), 986–1003


DOI 10.1111/JIEC.13012

Lima, P. M., Olivo, F., Paulo, P. L., Schalch, V., & Cimpan, C. (2019). Life Cycle Assessment of prospective MSW management based on integrated management planning in Campo Grande, Brazil. Waste Management, 90, 59–71.
DOI 10.1016/J.WASMAN.2019.04.035

Lima, M. C. C., Pontes, L. P., Vasconcelos, A. S. M., de Araujo Silva Junior, W., & Wu, K. (2022). Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles. Energies, 15(6), 2203.
DOI 10.3390/en15062203

Lybbert, M., Ghaemi, Z., Balaji, A. K., & Warren, R. (2021). Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 144, 111004.
DOI 10.1016/J.RSER.2021.111004

Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622.
DOI 10.1016/j.jpowsour.2021.229622

Mejame, P. P. M., Jung, D. Y., Lee, H., Lee, D. S., & Lim, S. R. (2020). Effect of technological developments for smartphone lithium battery on metal-derived resource depletion and toxicity potentials. Resources, Conservation and Recycling, 158, 104797.
DOI 10.1016/J.RESCONREC.2020.104797

Merchan, A. L., Belboom, S., & Léonard, A. (2020). Life cycle assessment of rail freight transport in Belgium. Clean Technologies and Environmental Policy, 22, 1109-1131.
DOI 10.1007/s10098-020-01853-8

Meshram, P., Mishra, A., Abhilash, & Sahu, R. (2020). Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids – A review. Chemosphere, 242, 125291.
DOI 10.1016/J.CHEMOSPHERE.2019.125291

Mohr, M., Peters, J. F., Baumann, M., & Weil, M. (2020). Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. Journal of Industrial Ecology, 24(6), 1310–1322.
DOI 10.1111/JIEC.13021

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons

Mrozik, W., Rajaeifar, M. A., Heidrich, O., & Christensen, P. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12), 6099–6121.
DOI 10.1039/D1EE00691F

Mulya, K. S., Zhou, J., Phuang, Z. X., Laner, D., & Woon, K. S. (2022). A systematic review of life cycle assessments of solid waste management: Methodological trends and prospects. Science of The Total Environment, 154903.
DOI 10.1016/j.scitotenv.2022.154903

Nessi, S., Sinkko, T., Bulgheroni, C., Garcia-Gutierrez, P., Giuntoli, J., Konti, A., Sanye Mengual, E., Tonini, D., Pant, R., Marelli, L. and Ardente, F.(2021). Life Cycle Assessment (LCA) of alternative feedstocks for plastics production - Part 1: the Plastics LCA method, EUR 30725 EN, Publications Office of the European Union, Luxembourg, 2021, ISBN 978-92-76-38145-7,
DOI 10.2760/271095, JRC125046

Nokeri, T. C., & Nokeri, T. C. (2022). Forecasting Growth. Econometrics and Data Science: Apply Data Science Techniques to Model Complex Problems and Implement Solutions for Economic Problems, 83-96.
DOI 10.1007/978-1-4842-7434-7_4

Henríquez, B. J. (2018). Impacto socioambiental de la extracción de litio en las cuencas de los salares altoandinos del Cono Sur. Observatorio de Conflictos Mineros de América Latina (OCMAL), Santiago de Chile. Retrieved from:https://www.ocmal.org/wp-content/uploads/2018/08/Impacto-Sociambiental-Litio.pdf

Oliveira Neto, J. F., Monteiro, M., Silva, M. M., Miranda, R., & Santos, S. M. (2022). Household practices regarding e-waste management: A case study from Brazil. Environmental Technology & Innovation, 102723.
DOI 10.1016/j.eti.2022.102723

Or, T., Gourley, S. W. D., Kaliyappan, K., Yu, A., & Chen, Z. (2020). Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2(1), 6–43.
DOI 10.1002/CEY2.29

Osorio-Tejada, J. L., Llera-Sastresa, E., & Scarpellini, S. (2022). Environmental assessment of road freight transport services beyond the tank-to-wheels analysis based on LCA. Environment, Development and Sustainability, 1-31.
DOI 10.1007/s10668-022-02715-7

Pagnanelli, F., Moscardini, E., Altimari, P., Abo Atia, T., & Toro, L. (2017). Leaching of electrodic powders from lithium ion batteries: Optimisation of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Management, 60, 706–715.
DOI 10.1016/J.WASMAN.2016.11.037

Qiao, Q., Zhao, F., Liu, Z., & Hao, H. (2019). Electric vehicle recycling in China: Economic and environmental benefits. Resources, Conservation and Recycling, 140, 45–53.
DOI 10.1016/J.RESCONREC.2018.09.003

Raj, T., Chandrasekhar, K., Kumar, A. N., Sharma, P., Pandey, A., Jang, M., Jeon, B. H., Varjani, S., & Kim, S. H. (2022). Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 429, 128312.
DOI 10.1016/J.JHAZMAT.2022.128312

Rajaeifar, M. A., Raugei, M., Steubing, B., Hartwell, A., Anderson, P. A., & Heidrich, O. (2021). Life cycle assessment of lithium-ion battery recycling using pyrometallurgical technologies. Journal of Industrial Ecology, 25(6), 1560–1571.
DOI 10.1111/JIEC.13157

Rajaeifar, M. A., Ghadimi, P., Raugei, M., Wu, Y., & Heidrich, O. (2022). Challenges and recent developments in supply and value chains of electric vehicle batteries: A sustainability perspective. Resources, Conservation and Recycling, 180, 106144.
DOI 10.1016/j.resconrec.2021.106144

Rey, I., Vallejo, C., Santiago, G., Iturrondobeitia, M., & Lizundia, E. (2021). Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment. ACS Sustainable Chemistry and Engineering, 9(43), 14488–14501.
DOI 10.1021/ACSSUSCHEMENG.1C04938/ASSET/IMAGES/LARGE/SC1C04938_0004.JPEG

Rhee, S. W., Jang, Y. C., & Kim, J. Y. (2021). Editorial: Challenges on end-of-life battery recycling of electric vehicles. Waste Management, 135, 327–328.
DOI 10.1016/J.WASMAN.2021.09.006

Rinne, M., Elomaa, H., & Lundström, M. (2021). Life cycle assessment and process simulation of prospective battery-grade cobalt sulfate production from Co-Au ores in Finland. The International Journal of Life Cycle Assessment 2021, 1, 1–16.
DOI 10.1007/S11367-021-01965-3

Rocha, T. B., & Penteado, C. S. G. (2021). Life cycle assessment of a small WEEE reverse logistics system: Case study in the Campinas Area, Brazil. Journal of Cleaner Production, 314, 128092.
DOI 10.1016/J.JCLEPRO.2021.128092

Royer, S. J., Ferrón, S., Wilson, S. T., & Karl, D. M. (2018). Production of methane and ethylene from plastic in the environment. PloS one, 13(8), e0200574.
DOI 10.1371/journal.pone.0200574

Schüler, D., Dolega, P., & Degreif, S. (2018). Social, economic and environmental challenges in primary lithium and cobalt sourcing for the rapidly increasing electric mobility sector. In European Policy Brief. Strategic Dialogue on Sustainable Raw Materials for Europe (STRADE)

Shaw, C., Sarkar, S., Kumar, S., & Rastogi, N. (2023). High release of isotopically depleted CO2 and CH4 from the photo-degradation of plastic: A pilot laboratory study. Physics and Chemistry of the Earth, Parts A/B/C, 132, 103474.
DOI 10.1016/j.pce.2023.103474

Slattery, M., Dunn, J., & Kendall, A. (2021). Transportation of electric vehicle lithium-ion batteries at end-of-life: A literature review. Resources, Conservation and Recycling, 174, 105755.
DOI 10.1016/j.resconrec.2021.105755

Song, J., Yan, W., Cao, H., Song, Q., Ding, H., Lv, Z., Zhang, Y., & Sun, Z. (2019). Material flow analysis on critical raw materials of lithium-ion batteries in China. Journal of Cleaner Production, 215, 570–581.
DOI 10.1016/J.JCLEPRO.2019.01.081

Song, X., Hu, S., Chen, D., & Zhu, B. (2017). Estimation of Waste Battery Generation and Analysis of the Waste Battery Recycling System in China. Journal of Industrial Ecology, 21(1), 57–69.
DOI 10.1111/JIEC.12407

Souza, R. G. (2020). E-waste situation and current practices in Brazil. In Handbook of Electronic Waste Management (pp. 377-396). Butterworth-Heinemann

Souza, R. G., Clímaco, J. C. N., Sant’Anna, A. P., Rocha, T. B., do Valle, R. de A. B., & Quelhas, O. L. G. (2016). Sustainability assessment and prioritisation of e-waste management options in Brazil. Waste Management, 57, 46–56.
DOI 10.1016/J.WASMAN.2016.01.034

Statista. (2022). Global notebook personal computer (PC) shipments from 2010 to 2026. Retrieved from: https://www.statista.com/statistics/269048/worldwide-portable-pc-shipment-forecast/. Date accessed: 20 april 2022

Sun, S., & Ertz, M. (2020). Life cycle assessment and Monte Carlo simulation to evaluate the environmental impact of promoting LNG vehicles. MethodsX, 7, 101046.
DOI 10.1016/J.MEX.2020.101046

Torkayesh, A. E., Rajaeifar, M. A., Rostom, M., Malmir, B., Yazdani, M., Suh, S., & Heidrich, O. (2022). Integrating life cycle assessment and multi criteria decision making for sustainable waste management: key issues and recommendations for future studies. Renewable and Sustainable Energy Reviews, 168, 112819.
DOI 10.1016/j.rser.2022.112819

Tsoy, N., Steubing, B., van der Giesen, C., & Guinée, J. (2020). Upscaling methods used in ex ante life cycle assessment of emerging technologies: a review. The International Journal of Life Cycle Assessment, 25(9), 1680-1692.
DOI 10.1007/s11367-020-01796-8

Turner, D. A., Williams, I. D., & Kemp, S. (2016). Combined material flow analysis and life cycle assessment as a support tool for solid waste management decision making. Journal of Cleaner Production, 129, 234–248.
DOI 10.1016/J.JCLEPRO.2016.04.077

Villares, M., Işıldar, A., van der Giesen, C., & Guinée, J. (2017). Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. The International Journal of Life Cycle Assessment, 22(10), 1618-1633.
DOI 10.1007/s11367-017-1270-6

Wang, D., Tang, Y. T., Sun, Y., & He, J. (2022). Assessing the transition of municipal solid waste management by combining material flow analysis and life cycle assessment. Resources, Conservation and Recycling, 177, 105966.
DOI 10.1016/J.RESCONREC.2021.105966

Wang, X., Gaustad, G., & Babbitt, C. W. (2016). Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation. Waste Management, 51, 204–213.
DOI 10.1016/J.WASMAN.2015.10.026

Windisch-Kern, S., Gerold, E., Nigl, T., Jandric, A., Altendorfer, M., Rutrecht, B., ... & Part, F. (2022). Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Management, 138, 125-139.
DOI 10.1016/j.wasman.2021.11.038

Winslow, K. M., Laux, S. J., & Townsend, T. G. (2018). A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resources, Conservation and Recycling, 129, 263–277.
DOI 10.1016/J.RESCONREC.2017.11.001

Xavier, L. H., Ottoni, M., & Lepawsky, J. (2021). Circular economy and e-waste management in the Americas: Brazilian and Canadian frameworks. Journal of Cleaner Production, 297, 126570.
DOI 10.1016/j.jclepro.2021.126570

Xavier, L. H., Ottoni, M., & Abreu, L. P. P. (2023). A comprehensive review of urban mining and the value recovery from e-waste materials. Resources, Conservation and Recycling, 190, 106840.
DOI 10.1016/j.resconrec.2022.106840

Xu, C., Dai, Q., Gaines, L., Hu, M., Tukker, A., & Steubing, B. (2020). Future material demand for automotive lithium-based batteries. Communications Materials 2020 1:1, 1(1), 1–10.
DOI 10.1038/s43246-020-00095-x

Yu, D., Huang, Z., Makuza, B., Guo, X., & Tian, Q. (2021). Pretreatment options for the

recycling of spent lithium-ion batteries: A comprehensive review. Minerals Engineering, 173, 107218.
DOI 10.1016/J.MINENG.2021.107218

Yun, L., Linh, D., Shui, L., Peng, X., Garg, A., Le, M. L. P., ... & Sandoval, J. (2018). Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resources, Conservation and Recycling, 136, 198-208.
DOI 10.1016/j.resconrec.2018.04.025

Zhao, E., Walker, P. D., Surawski, N. C., & Bennett, N. S. (2021). Assessing the life cycle cumulative energy demand and greenhouse gas emissions of lithium-ion batteries. Journal of Energy Storage, 43, 103193.
DOI 10.1016/J.EST.2021.103193

Zubi, G., Dufo-López, R., Carvalho, M., & Pasaoglu, G. (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292–308.
DOI 10.1016/J.RSER.2018.03.002