an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Derovil Antônio dos Santos Filho - Chemical Engineering, Universidade Federal de Pernambuco (UFPE), Brazil
  • Laís Roberta Galdino de Oliveira - Chemical Engineering, Universidade Federal de Pernambuco (UFPE), Brazil
  • Maurício Cabral Penteado - Environmental Engineering, Universidade Estadual do Centro-oeste (UNICENTRO), Brazil
  • Waldir Nagel Schirmer - Environmental Engineering , Universidade Estadual do Centro-Oeste, Brazil
  • Maurício Alves da Motta Sobrinho - Chemical Engineering, Universidade Federal de Pernambuco (UFPE), Brazil
  • José Fernando Thomé Jucá - Chemical Engineering, Universidade Federal de Pernambuco (UFPE), Brazil

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


The present study evaluated the potential for biogas generation from organic waste unfit for consumption collected at the Pernambuco Supply and Logistics Center (CEASA-PE), as well as an estimation of the electric energy production from waste biodigestion generated in this plant. The biogas generation potential used BMP bench-test (biochemical methane potential) biodigesters, in which the biogas production was qualitatively/quantitatively evaluated from CEASA waste codigested with different inocula (bovine ruminal fluid, goat manure and UASB reactor sludge) under mesophilic conditions for 80 days. The laboratory test showed that the waste inoculated with ruminant manures (goat and bovine) presented the lowest net volume of generated biogas compared to the other treatments.: 23.2 and 19.2 NmL.gds-1. On the other hand, the treatments with sludge and mixture of all the inocula generated the largest biogas volumes: 37.6 and 44 NmL.gds-1, respectively. A potential of 359 kWh.d-1 of electric power generation was estimated from the biogas generated at CEASA from the BMP bench assay, as well as from the quantitative and physicochemical parameters of the waste generated in this unit. The results indicate high potential for energy generation in the evaluated CEASA plant, promoting the recovery of these wastes as an alternative and renewable source for sustainable energy production, transforming environmental liabilities into potentially energetic assets of aggregate economic value.


Editorial History

  • Received: 25 May 2019
  • Revised: 06 Jan 2020
  • Accepted: 08 Jan 2020
  • Available online: 10 Feb 2020


Abbasi T, Tauseef SM, Abbasi SA (2012) Anaerobic digestion for global warming control and energy generation - An overview. Renewable and Sustainable Energy Reviews, 16:3228-3242

ABNT - Associação Brasileira de Normas Técnicas (2003) NBR 13.999:2003, Papel, cartão, pastas celulósicas e madeira - Determinação do resíduo (cinza) após a incineração a 525°C. 4p. [in Portuguese]

ABNT - Associação Brasileira De Normas Técnicas (2004) NBR 10007:2004, Amostragem de resíduos sólidos. 21p. [in Portuguese]

ABNT - Associação Brasileira de Normas Técnicas (2008) NBR 15213:2008, Gás natural e outros combustíveis gasosos - Cálculo do poder calorífico, densidade absoluta, densidade relativa e índice de Wobbe a partir da composição. 44 p. [in Portuguese]

Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas Handbook. 1.ed. Denmark: University of Southern Denmark Esbjerg. 125p

Alkaya E, Demirer GN (2011) Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors. Renewable Energy, 36:971-975

Álvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresource Technology, 101:1153-1158

Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science & Technology, 59:927–934

APHA - Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association (2005) 21.ed. Washington: Water Environmental Federation. 541 p

Barbosa FJL, Cabral AR, Capanema MA, Schirmer WN (2018) Biogas generation potential of anaerobic co-digestion of municipal solid wastes and livestock manures. Journal of Solid Waste Technology and Management, 44:248-258

Bauer F, Hulteberg C, Persson T, Tamm D. (2013) SGC – Svenskt Gastekniskt Center. Rapport 2013:270, Biogas upgrading – Review of commercial technologies. 82p

Brasil – Presidência da República. Law 13.576 (2017) Dispõe sobre a Política Nacional de Biocombustíveis (RenovaBio) e dá outras providências. Available at Accessed: 17 Ago 2018. [in Portuguese]

Cabbai V, Ballico M, Aneggi E, Goi D (2013) BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33:1626-1632

Cavaleiro AJ, Ferreira T, Pereira F, Tommaso G, Alves MM (2013) Biochemical methane potential of raw and pre-treated meat-processing wastes. Bioresource Technology, 129:519-525

CEASA-PE – Centro de Abastecimento e Logística de Pernambuco (2017) Plano de Gerenciamento de Resíduos Sólidos (PGRS). Recife: CEASA-PE, 57p. [in Portuguese]

CETESB/ANA – Companhia Ambiental do Estado de São Paulo / Agência Nacional de Águas (2011) Guia nacional de coleta e preservação de amostras - Água, sedimento, comunidades aquáticas e efluentes líquidos. 2.ed. São Paulo: CETESB; Brasília: ANA, 326p. [in Portuguese]

Coelho WLV, Da Silva FS, Dallacort R, Carneiro PAV (2016) Análise do potencial de geração de energia elétrica a partir dos resíduos do setor sucroenergético no Estado de Mato Grosso em diferentes cenários produtivos. Revista Brasileira de Energias Renováveis, 05:332-351. [in Portuguese]

Decottignies V, Galtier L, Lefebvre X, Villerio T (2005) Comparison of analytical methods to determine the stability of municipal solid waste and related wastes. In: Proceedings Sardinia, Tenth International Waste Management and Landfill Symposium, Cagliari, Italy

Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources. 2.ed. Weinheim: Wiley-Vch, 443p

Eck CP (2000) Effects of moisture content in solid waste landfills. Master’s Thesis (Engineering and Environmental Management), Air Force Institute of Technology, Wright-Patterson Air Force Base, 103f

El-Mashad HM, Zhang R (2010) Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101:4021-4028

Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev. Environmental Science Biotechnology, 11:325-341

Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetables solid waste feedstocks. Biomass and Bioenergy, 26:389-399

Kunz A, Oliveira PAV (2006) Aproveitamento de dejetos de animais para geração de biogás. Revista de Política Agrícola, 15:28-35

Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 102:2255-2264

Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Conversion and Management, 43:63-75

Maciel FJ, Jucá JFT (2011) Evaluation of landfill gas production and emissions in a MSW large-scale experimental cell in Brazil. Waste Management, 31:966–977

Mackie RI (2002) Mutualistic Fermentative Digestion in the Gastrointestinal Tract: Diversity and Evolution. Integrative and Comparative Biology, 42:319-326

Mata-Alvarez J, Macé S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74:3-16

Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36:412-427

Mshandete A, Kivaisi A, Rubindamayugi M, Mattiasson B (2004) Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology, 95:19-24

O’Leary PR, Tchobanoglous G (2002) Landfilling. In: Tchobanoglous G, Kreith F. Handbook of solid waste management. 2.ed. New York: Mcgraw-hill, Chap. 14, p.1-93

Oliveira LRG, Santos Filho DA, Vasconcelos KC, Lucena TV, Jucá JFT, Santos AFMS (2018) Methanization potential of anaerobic biodigestion of solid food waste. Revista Brasileira de Engenharia Agrícola e Ambiental, 22:69-73

Orrico Jr. MAP, Orrico ACA, Lucas Jr J (2011) Produção animal e o meio ambiente: uma comparação entre potencial de emissão de metano dos dejetos e a quantidade de alimento produzido. Revista Engenharia Agrícola, 31:399-410

Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Biossay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 13:485-492

Parawira W, Murto M, Zvauya R, Mattiasson B (2004) Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 29:1811-1823

Pearse LF, Hettiaratchi JP, Kumar S (2018) Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254:312-324

Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation – a review. Energy Conversion and Management, 52:3369–3375

Rincón B, Bujalance L, Fermoso FG, Martín A, Borja R (2013) Biochemical methane potential of two-phase olive mill solid waste: Influence of thermal pretreatment on the process kinetics. Bioresource Technology, 140:249-255

Scarlat N, Dallemand J-F, Fahl F (2018) Biogas: Developments and perspectives in Europe. Renewable Energy, 129:457-472

Schirmer WN, Jucá JFT, Schuler ARP, Holanda S, Jesus LL (2014) Methane production in anaerobic digestion of organic waste from Recife (Brazil) Landfill: evaluation in refuse of different ages. Brazilian Journal of Chemical Engineering, 31:373-384

Schirmer WN, Gauer MA, Tomaz E, Rodrigues PRP, Souza SNM, Chaves LI, Villetti L, Olanyk LZ, Cabral AR (2016) Power generation and gaseous emissions performance of an internal combustion engine fed with blends of soybean and beef tallow biodiesel. Environmental Technology, 37:1480-1489

USEPA - US Environmental Protection Agency (1991) EPA-450/3-90-011a, Air emissions from municipal solid waste landfills – Background information for proposed standards and guidelines. 543p

Van Foreest F. (2012) Perspectives for biogas in Europe. The Oxford Institute for Energy Studies. Available at Accessed: 03 Jan 2020

Vandevivere P, De Baere L, Verstraete W (2002) Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J. Biomethanization of the organic fraction of municipal solid wastes. Londres, IWA Publishing, Chap. 4, p.111-140

Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99:7928-7940

WEC - World Energy Council (2013) World Energy Resources – 2013 Survey. London, 468p

WHO – International Reference Centre for Wastes Disposal (1978), CH 8600. Methods of Analysis of Sewage Sludge, Solid Wastes and Compost. 49p

Wlodarski L, Maeda EM, Fluck AC, Gilioli D (2017) Microbiota gruminal: diversidade, importância e caracterização. REDVET - Revista Electrónica de Veterinária, 18:1-20

Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48:901–911