Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
Abbott, A., Collins, J., Dalrymple, I., Harris, R., Mistry, R., Qiu, F., Scheirer, J. and Wise, W., 2009. Processing of electric arc furnace dust using deep eutectic solvents. Australian journal of chemistry, 62(4), pp.341-347
Asghari, I., Mousavi, S. M., Amiri, F., & Tavassoli, S. (2013). Bioleaching of spent refinery catalysts: A review. In Journal of Industrial and Engineering Chemistry (Vol. 19, Issue 4, pp. 1069–1081). Elsevier.
DOI 10.1016/j.jiec.2012.12.005
Binnemans, K., Jones, P. T., Manjón Fernández, Á., & Masaguer Torres, V. (2020). Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review. Journal of Sustainable Metallurgy 2020 6:4, 6(4), 505–540.
DOI 10.1007/S40831-020-00306-2
Chen, S., Yang, Y., Liu, C., Dong, F., & Liu, B. (2015). Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans. Chemosphere, 141, 162–168.
DOI 10.1016/j.chemosphere.2015.06.082
Gomes, H. I., Funari, V., Mayes, W. M., Rogerson, M., & Prior, T. J. (2018). Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Journal of Environmental Management, 222.
DOI 10.1016/j.jenvman.2018.05.056
Henke, B.L., Gullikson, E.M. and Davis, J.C.S. (2022) CXRO X-Ray Interactions With Matter. Available at: https://henke.lbl.gov/optical_constants/ (Accessed: 10 June 2022)
Hocheng, H., Su, C., & Jadhav, U. U. (2014). Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere, 117(1), 652–657.
DOI 10.1016/j.chemosphere.2014.09.089
Mishra, D., Kim, D. J., Ralph, D. E., Ahn, J. G., & Rhee, Y. H. (2008). Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Journal of Hazardous Materials, 152(3), 1082–1091.
DOI 10.1016/j.jhazmat.2007.07.083
Muddanna, M. H., & Baral, S. S. (2021). Bioleaching of rare earth elements from spent fluid catalytic cracking catalyst using Acidothiobacillus ferrooxidans. Journal of Environmental Chemical Engineering, 9(1), 104848.
DOI 10.1016/J.JECE.2020.104848
OECD, 2021. Latest Developments In Steelmaking Capacity 2021. The Organisation for Economic Co-operation and Development (OECD) https://www.oecd.org/sti/ind/steelcapacity.htm (Accessed: Nov 01, 2021)
Pan, J., Hassas, B., Rezaee, M., Zhou, C. and Pisupati, S., 2021. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. Journal of Cleaner Production, 284, p.124725
Panagos, P., Van Liedekerke, M., Yigini, Y., Montanarella, L. (2013). Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. Journal of Environmental and Public Health, Article ID 158764.
DOI 10.1155/2013/158764
Piatak, N. M., Parsons, M. B., & Seal, R. R. (2015). Characteristics and environmental aspects of slag: A review. Applied Geochemistry, 57, 236–266.
DOI 10.1016/J.APGEOCHEM.2014.04.009
Rao, M., Singh, K., Morrison, C. and Love, J., 2020. Challenges and opportunities in the recovery of gold from electronic waste. RSC Advances, 10(8), pp.4300-4309
Ravansari, R., Wilson, S., & Tighe, M. (2020). Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environment International, 134, 105250.
DOI 10.1016/j.envint.2019.105250
Riley, A. L., MacDonald, J. M., Burke, I. T., Renforth, P., Jarvis, A. P., Hudson-Edwards, K. A., McKie, J., & Mayes, W. M. (2020). Legacy iron and steel wastes in the UK: Extent, resource potential, and management futures. Journal of Geochemical Exploration, 219, 106630.
DOI 10.1016/J.GEXPLO.2020.106630
Roy, J. J., Madhavi, S., & Cao, B. (2021). Metal extraction from spent lithium-ion batteries (LIBs) at high pulp density by environmentally friendly bioleaching process. Journal of Cleaner Production, 280, 124242.
DOI 10.1016/j.jclepro.2020.124242
Srichandan, H., Mohapatra, R. K., Singh, P. K., Mishra, S., Parhi, P. K., & Naik, K. (2020). Column bioleaching applications, process development, mechanism, parametric effect and modelling: A review. In Journal of Industrial and Engineering Chemistry (Vol. 90).
DOI 10.1016/j.jiec.2020.07.012
Tavakoli, H. Z., Abdollahy, M., Ahmadi, S. J., & Darban, A. K. (2017). Enhancing recovery of uranium column bioleaching by process optimization and kinetic modeling. Transactions of Nonferrous Metals Society of China (English Edition), 27(12), 2691–2703.
DOI 10.1016/S1003-6326(17)60298-X
Third, K. A., Cord-Ruwisch, R., & Watling, H. R. (2000). The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy, 57(3), 225–233.
DOI 10.1016/S0304-386X(00)00115-8
Tran, M., Rodrigues, M., Kato, K., Babu, G. and Ajayan, P., 2019. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nature Energy, 4(4), pp.339-345
Vandenberghe, R. E., de Resende, V. G., da Costa, G. M., & de Grave, E. (2010). Study of loss-on-ignition anomalies found in ashes from combustion of iron-rich coal. Fuel, 89(9), 2405–2410.
DOI 10.1016/J.FUEL.2010.01.022
Wang, J., Wang, Z., Zhang, Z., & Zhang, G. (2019a). Effect of Addition of Other Acids into Butyric Acid on Selective Leaching of Zinc from Basic Oxygen Steelmaking Filter Cake. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science.
DOI 10.1007/s11663-019-01563-7
Wang, J., Wang, Z., Zhang, Z., & Zhang, G. (2019b). Removal of zinc from basic oxygen steelmaking filter cake by selective leaching with butyric acid. Journal of Cleaner Production, 209, 1–9.
DOI 10.1016/J.JCLEPRO.2018.10.253
Wu, Q., Cui, Y., Li, Q. and Sun, J., 2015. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. Journal of hazardous materials, 283, pp.748-754
Yesil, H. and Tugtas, A., 2019. Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes. Science of the Total Environment, 693, p.133608
Zare Tavakoli, H., Abdollahy, M., Ahmadi, S. J., & Khodadadi Darban, A. (2017a). The effect of particle size, irrigation rate and aeration rate on column bioleaching of uranium ore. Russian Journal of Non-Ferrous Metals, 58(3), 188–199.
DOI 10.3103/S106782121703018X
Zare Tavakoli, H., Abdollahy, M., Ahmadi, S. J., & Khodadadi Darban, A. (2017b). Kinetics of uranium bioleaching in stirred and column reactors. Minerals Engineering, 111, 36–46.
DOI 10.1016/j.mineng.2017.06.003
Maria Villen-Guzman, Maria del Mar Cerrillo-Gonzalez, Juan Manuel Paz-Garcia, Carlos Vereda-Alonso, Cesar Gomez-Lahoz and Jose M. Rodriguez-Maroto
Published 31 Dec 2022Title | Support | Price |
---|