an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ECO-FRIENDLY DEMETALLISATION OF METALLISED ACRYLONITRILE-BUTADIENE-STYRENE (ABS) BY USING BIOGENIC LIXIVIANTS

  • Salvador Pocoví-Martínez - Chemical Technologies, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain
  • Laura Grima-Carmena - Chemical technologies, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain
  • Sales Ibiza Palacios - Materials laboratory, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain
  • Lucía Martín Román - Materials laboratory, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain
  • Carla Camiña Urgel - Materials laboratory, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain
  • Francisco Bosch Mossi - Chemical Technologies, AIDIMME - Instituto Tecnológico Metalmecánico, Mueble, Madera, Embalaje y Afines, Spain

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

A novel environmental process for the demetallisation of metal coated (Cu, Ni and Cr) acrylonitrile-butadiene-styrene (ABS) was developed. Different biogenic lixiviants were generated and combined to carry out the indirect bioleaching tests on different formats of metallised ABS waste. The best bioleaching conditions were obtained for a high metal dissolution (Cu and Ni), the effective separation of metallic Cr and the obtention of unaltered ABS, suitable to be reused. The lixiviant solution can be reused several times to concentrate Cu and Ni. The process also includes the use of spent pickling acids for pH adjustment, which offered similar results compared to tests done with acids. That settles the circular economy approach in the Valencian sector to recover hazardous wastes.

Keywords


Editorial History

  • Received: 03 Jun 2025
  • Revised: 31 Jul 2025
  • Accepted: 06 Aug 2025
  • Available online: 09 Sep 2025

References

ACTECO, personal communication, 2020

Bartlett, R.W., 1998. Solution Mining. Gordon and Breach Science Publishers. 2nd ed

Bradley, P., Sohn, H., McCarter, M., 1992. Model for ferric sulfate leaching of copper ores containing a variety of sulfide minerals: Part I. Modeling uniform size ore fragments. Metall. Trans. B. 23, 537-548.
DOI 10.1007/BF02649713

Brock, T.D., Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., Stahl, D. A., 2018. Biology of Microorganisms (15th ed.). Pearson. ISBN: 1292405236

Calvo, E. J., 2019. Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling. Curr. Opinion Electrochem. 15, 102-108.
DOI 10.1016/j.coelec.2019.04.010

Grima-Carmena, L., Oyonarte-Andrés, S., Giner-Sanz, J. J., García-Gabaldón, M., Bosch-Mossi, F., Pérez-Herranz, V., 2023. Statistical analysis of the effect of the electrochemical treatment and the acid concentration on the leaching of NMC cathodes from spent Li-ion batteries. J. Environ. Chem. Eng. 11, 5, 110423.
DOI 10.1016/j.jece.2023.110423

Habibi, A., Shamshiri-Kourdestani, S., Hadadi, M., 2020. Biohydrometallurgy as an environmentally friendly approach in metals recovery from electrical waste: A review. Waste Manag Res. 38, 232-244.
DOI 10.1177/0734242X19895321

Iglesias-González, N., Ramírez, P., Lorenzo-Tallafigo, J., Romero-García, A., Mazuelos, A., Romero, R., Carranza, F., 2022. Copper recovery from unground printed circuit board by biogenic ferric at high solid/liquid ratio. Miner. Eng. 180, 107471.
DOI 10.1016/j.mineng.2022.107471

John, A. S., Gurumurthy, K., 2025. Optimization of copper recovery from WEEE by bio-metallurgical process. Detritus, 30, 23–28.
DOI 10.31025/2611-4135/2025.19463

Kim, T. G., Srivastava, R. R., Jun, M., Kim, M.-S., Lee, J.-C., 2018. Hydrometallurgical recycling of surface-coated metals from automobile-discarded ABS plastic waste. Waste Manage. 80, 414-422.
DOI 10.1016/j.wasman.2018.09.037

Li, J., Wen, J. Guo, Y., An, N., Liang, C., Ge, Z., 2020. Bioleaching of gold from waste printed circuit boards by alkali-tolerant Pseudomonas fluorescens. Hydrometallurgy. 194, 105260.
DOI 10.1016/j.hydromet.2020.105260

Mallory, G.O., Hajdu, J., 1990. Electroless plating : fundamentals and applications

Markowski, J., Ay, P., Pempel, H., Logsch, F., 2016. Recycling of metal-coated plastic parts from end-of-life-vehicles (ELV) with biotechnological methods. Proc. XXVIII IMPC2016. 191. ISBN: 978-1-926872-29-2

Maroo, S., Chandramohan, P., Srinivasan, M.P., Velmurugan, S., 2020. Chemical dissolution of iron substituted chromium oxide by dissolved ozone. Prog. Nuclear Ener. 120, 103189.
DOI 10.1016/j.pnucene.2019.103189

Melentiev, R., Tao, R., Fatta, L., Tevtia, A., Lubineau, G., 2022. Effect of Actual Surface Area on Adhesion Strength of Copper Electroplated on ABS Plastic micro-Textured by Hot Embossing. Proc. CIRP, 108, 210-215.
DOI 10.1016/j.procir.2022.03.037

Milazzo, G., Caroli, S., Sharma, V. K., 1978. Tables of Standard Electrode Potentials, Wiley. ISBN-10. 0471995347

Olivera, S., Muralidhara, H.B., Venkatesh, K., Gopalakrishna, K., Vivek, C.S., 2016. Plating on Acrylonitrile–Butadiene–Styrene (ABS) Plastic: A Review. J. Mater Sci. 51, 3657–3674.
DOI 10.1007/s10853-015-9668-7

Rawlings, D.E., 2005. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb. Cell Fact. 4, 13.
DOI 10.1186/1475-2859-4-13

Reartes, G. B., Morando, P. J., Blesa, M. A., Hewlett, P. B., Matijevic, E., 1995. Reactivity of Chromium Oxide in Aqueous Solutions. 2. Acid Dissolution. Langmuir. 11, 2277-2284.
DOI 10.1021/la00006a068

Sinha, R., Chauhan, G., Singh, A., Kumar, A., Acharya, S., 2018. A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste. J. Environ. Chem.l Eng. 6, 1053-1061.
DOI 10.1016/j.jece.2018.01.030

Song, Y., Zhao, Z., 2018. Recovery of lithium from spent lithium-ion batteries using precipitation and electrodialysis techniques. Sep. Pur. Technol. 206, 335-342.
DOI 10.1016/j.seppur.2018.06.022

Suchentrunk, R., 1993. Metallizing of Plastics-A Handbook of Theory and Practice. ASM Int., Finishing Publications LTD., UK. ISBN 0-904477-13-4

Tezyapar Kara, I., Marsay, N., Huntington, V., Coulon, F., Alamar, M. C., Capstick, M., Higson, S., Buchanan, A., Wagland, S., 2022. Assessing metal recovery opprtunities through bioleaching from past metallurgical sites and waste deposits: UK case study. Detritus, 21, 62–71.
DOI 10.31025/2611-4135/2022.17232

Uraz, C. & Gürmen-Özçelik, T., 2019. Electroless Metal Plating Over Abs Plastic. Eng. Sci. (NWSAENS), 14, 63-70.
DOI 10.12739/NWSA.2019.14.2.1A0432

UTEXAS, 2016. https://mccord.cm.utexas.edu/courses/spring2016/ch302/standard-pots-redox.php

Van Eygen, E., De Meester, S., Dewulf, J., 2015. Raw materials savings by urban mining: the case of desktop and laptop computers in Belgium. Policy Research Centre for Sustainable Materials Management, Leuven. Research aper 17. https://ce-center.vlaanderen-circulair.be/src/Frontend/Files/userfiles/files/RP17-Raw-Materials-Saving-by-Urban-Mining.pdf

Van Eygen, E., De Meester, S., Tran, H. P., Dewulf, J., 2016. Resource savings by urban mining: The case of desktop and laptop computers in Belgium. Res. Conserv. Recycl. 107, 53-64.
DOI 10.1016/j.resconrec.2015.10.032

Walls, C., Choi, B.-K., Putri, A. R. K., Bernal-Osorio, A., D’Souza, A., Khadse, H., Ghori, M., Rossa, J., Varute, S., & Beck, G. (2023). Recycling of Metallised Plastic as a Case Study for a Continuous Sustainability Improvement Process. Sustainability, 15, 14737.
DOI 10.3390/su152014737

Yken, J. V., Cheng, K. Y., Boxall, N. J., Nikoloski, A. N., Moheimani, N., Valix, M., Sahajwalla, V., Kaksonen, A. H., 2020. Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy. 196,
DOI 10.1016/j.hydromet.2020.105433