an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

OPTIMIZATION OF COPPER RECOVERY FROM WEEE BY BIO-METALLURGICAL PROCESS

  • Angel Sneha John - School of Biosciences and Technology, Vellore Institute of Technology, India
  • Kalaichelvan Gurumurthy - VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, India

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Abstract

Bioleaching of metals from Waste Printed Circuit Board (WPCB) is an alternative path for metal mining. Metallic composition of processed PCB at different size were estimated in this study. Acidithiobacillus ferrooxidans was used as a biomining agent to recover copper. Recovery of copper using this organism can be affected with several factors like pH, temperature, pulp density, sample quantity, sample size, inoculum load etc., It is pertinent to screen and optimize the influencing variables to maximize recovery. Four factors viz. particle size, temperature, FeSO4 concentration and sample quantity were screened using Plackett-Burmann design. The process variables, temperature, FeSO4 concentration and sample quantity were optimized using Box-Behnken design at 30ºc temperature, 40.08 g/L FeSO4 concentration and sample quantity of 5 g/L with a recovery rate of 80.56%. Using the optimized values, the influence of inoculum load and treatment duration were assessed. Inoculum of 50 ml/L and treatment period of 20 days produced a recovery rate of copper of 86.9%. Redox potential curve and pH variation of the bioleaching system also supports the findings of optimization as well as enhancement.

Keywords


Editorial History

  • Received: 23 Sep 2023
  • Revised: 10 Nov 2024
  • Accepted: 18 Nov 2024
  • Available online: 11 Jan 2025

References

Alfonzetti, S., Dilettoso, E., & Salerno, N. (2003). Application of Screening Analysis to the Optimization of an Electromagnetic Induction Heating Device. In Optimization and Inverse Problems in Electromagnetism (pp. 213–221). Springer Netherlands.
DOI 10.1007/978-94-017-2494-4_21

Annamalai, M., & Gurumurthy, K. (2021). Characterization of end-of-life mobile phone printed circuit boards for its elemental composition and beneficiation analysis. Journal of the Air and Waste Management Association, 71(3), 315–327.
DOI 10.1080/10962247.2020.1813836

Awasthi, A. K., Hasan, M., Mishra, Y. K., Pandey, A. K., Tiwary, B. N., Kuhad, R. C., Gupta, V. K., & Thakur, V. K. (2019). Environmentally sound system for E-waste: Biotechnological perspectives. Current Research in Biotechnology, 1, 58–64.
DOI 10.1016/j.crbiot.2019.10.002

Bizzo, W. A., Figueiredo, R. A., & de Andrade, V. F. (2014). Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials, 7(6), 4555–4566.
DOI 10.3390/ma7064555

Bosecker, K. (1997). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.
DOI 10.1111/j.1574-6976.1997.tb00340.x

Brahmaprakash, G. P., Devasia, P., Jagadish, K. S., Natarajan, K. A., & Ramananda Rao, G. (1988). Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc. Bulletin of Materials Science, 10(5), 461–465.
DOI 10.1007/BF02744659

Chanda, S., Nath Paul, B., Paul, B., Chanda, S., Das, S., Singh, P., & Pandey, B. (2014). Mineral Assay in Atomic Absorption Spectroscopy Development of Larval diet for Ompok bimaculatus, a high-valued fish of regional importance View project Mineral Assay in Atomic Absorption Spectroscopy (Vol. 4). https://www.researchgate.net/publication/279195165

Chatterjee, S. (2011). Electronic Waste and India. www.greenpeace.org

Creamer, N. J., Baxter-Plant, V. S., Henderson, J., Potter, M., & Macaskie, L. E. (2006). Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans. Biotechnology Letters, 28(18), 1475–1484.
DOI 10.1007/s10529-006-9120-9

Deveci, H., Akcil, A., & Alp, I. (2003). Parameters for Control and Optimization of Bioleaching of Sulfide Minerals. Materials Science and Technology 2003 Meeting, May 2014, 77–90

Feldman, A. V. (1993). 45) Date of Patent: 54 METHOD FOR PROCESSING SCRAP OF ELECTRONIC INSTRUMENTS

Fukuda, I. M., Pinto, C. F. F., Moreira, C. D. S., Saviano, A. M., & Lourenço, F. R. (2018). Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). In Brazilian Journal of Pharmaceutical Sciences (Vol. 54, Issue Special Issue). Faculdade de Ciencias Farmaceuticas (Biblioteca).
DOI 10.1590/s2175-97902018000001006

Gao, X., Jiang, L., Mao, Y., Yao, B., & Jiang, P. (2021). Progress, Challenges, and Perspectives of Bioleaching for Recovering Heavy Metals from Mine Tailings. In Adsorption Science and Technology (Vol. 2021). Hindawi Limited.
DOI 10.1155/2021/9941979

Garcia-Valles, M., Avila, G., Martinez, S., Terradas, R., & Nogués, J. M. (2008). Acoustic barriers obtained from industrial wastes. Chemosphere, 72(7), 1098–1102.
DOI 10.1016/j.chemosphere.2008.03.039

Gu, T., Rastegar, S. O., Mousavi, S. M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. In Bioresource Technology (Vol. 261, pp. 428–440). Elsevier Ltd.
DOI 10.1016/j.biortech.2018.04.033

Hino, T., Agawa, R., Moriya, Y., Nishida, M., Tsugita, Y., & Araki, T. (2009). Techniques to separate metal from waste printed circuit boards from discarded personal computers. Journal of Material Cycles and Waste Management, 11(1), 42–54.
DOI 10.1007/s10163-008-0218-0

Iqbal, M. M. A., Bakar, W. A. W. A., Toemen, S., Razak, F. I. A., & Azelee, N. I. W. (2020). Optimization study by Box-Behnken design (BBD) and mechanistic insight of CO2 methanation over Ru-Fe-Ce/γ-Al2O3 catalyst by in-situ FTIR technique. Arabian Journal of Chemistry, 13(2), 4170–4179.
DOI 10.1016/j.arabjc.2019.06.010

Jung, M., Yoo, K., & Alorro, R. D. (2017). Dismantling of electric and electronic components from waste printed circuit boards by hydrochloric acid leaching with stannic ions. Materials Transactions, 58(7), 1076–1080.
DOI 10.2320/matertrans.M2017096

Kim, Y., Seo, H., & Roh, Y. (2018). Metal Recovery from the Mobile Phone Waste by Chemical and Biological Treatments. Minerals, 8(1), 8.
DOI 10.3390/min8010008

Kinnunen, P., Mäkinen, J., Salo, M., Soth, R., & Komnitsas, K. (2020). Efficiency of chemical and biological leaching of copper slag for the recovery of metals and valorisation of the leach residue as raw material in cement production. Minerals, 10(8), 1–19.
DOI 10.3390/min10080654

Kumar, P., Jyoti, B., Kumar, A., & Paliwal, A. (2019). Biotechnological and microbial standpoint cahoot in bioremediation. In Smart Bioremediation Technologies: Microbial Enzymes (pp. 137–158). Elsevier.
DOI 10.1016/B978-0-12-818307-6.00008-1

Maluckov, B. S. (2017). The Catalytic Role of Acidithiobacillus ferrooxidans for Metals Extraction from Mining - Metallurgical Resource. Biodiversity International Journal, 1(3).
DOI 10.15406/bij.2017.01.00017

Mat Rosid, S. J., Wan Abu Bakar, W. A., & Ali, R. (2018). Characterization and modelling optimization on methanation activity using Box-Behnken design through cerium doped catalysts. Journal of Cleaner Production, 170, 278–287.
DOI 10.1016/j.jclepro.2017.09.073

McSweeney, N. J., Tilbury, A. L., Nyeboer, H. J., McKinnon, A. J., Sutton, D. C., Franzmann, P. D., & Kaksonen, A. H. (2011). Molecular characterisation of the microbial community of a full-scale bioreactor treating Bayer liquor organic waste. Minerals Engineering, 24(11), 1094–1099.
DOI 10.1016/j.mineng.2011.02.001

Meng, L., Wang, Z., Zhong, Y., Guo, L., Gao, J., Chen, K., Cheng, H., & Guo, Z. (2017). Supergravity separation for recovering metals from waste printed circuit boards. Chemical Engineering Journal, 326, 540–550.
DOI 10.1016/j.cej.2017.04.143

Mmereki, D., Li, B., Baldwin, A., & Hong, L. (2016). The Generation, Composition, Collection, Treatment and Disposal System, and Impact of E-Waste. In E-Waste in Transition - From Pollution to Resource. InTech.
DOI 10.5772/61332

Narayan, S. J., & Sahana, S. (2009). Bioleaching: A review. In Research Journal of Biotechnology

Nemati, M., Harrison, S. T. L., Hansford, G. S., & Webb, C. (1998). Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans: a review on the kinetic aspects. Biochemical Engineering Journal, 1(3), 171–190.
DOI 10.1016/S1369-703X(98)00006-0

Oliveira, P. C., Cabral, M., Nogueira, C. A., & Margarido, F. (n.d.). Printed Circuit Boards Recycling: Characterization of Granulometric Fractions from Shredding Process.

Pant, D., Joshi, D., Upreti, M. K., & Kotnala, R. K. (2012). Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management, 32(5), 979–990.
DOI 10.1016/j.wasman.2011.12.002

Shreyas Madhav, A. v., Rajaraman, R., Harini, S., & Kiliroor, C. C. (2022). Application of artificial intelligence to enhance collection of E-waste: A potential solution for household WEEE collection and segregation in India. Waste Management and Research, 40(7), 1047–1053.
DOI 10.1177/0734242X211052846

Sugio, T., de Los Santos, S. F., de Los Santos, S. F., Inagaki, K., & Tano, T. (1990). The mechanism of copper leaching by intact cells of thiohacillus ferrooxidans. Agricultural and Biological Chemistry, 54(9), 2293–2298.
DOI 10.1080/00021369.1990.10870329

Toemen, S., Wan Abu Bakar, W. A., & Ali, R. (2017). CO2/H2 methanation technology of strontia based catalyst: physicochemical and optimisation studies by Box–Behnken design. Journal of Cleaner Production, 146, 71–82

Veit, H. M., Pereira, C. D. C., & Bernardes, A. M. (2002). Recycling Electronic Scrap Using Mechanical Processing in Recycling Printed Wiring Boards Recycling Electronic Scrap Using Mechanical Processing in Recycling Printed Wiring Boards*

Wang, J., Zhu, S., Zhang, Y. S., Zhao, H. B., Hu, M. H., Yang, C. R., Qin, W. Q., & Qiu, G. Z. (2014). Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Journal of Central South University, 21(2), 728–734.
DOI 10.1007/s11771-014-1995-3

Xia, M. C., Wang, Y. P., Peng, T. J., Shen, L., Yu, R. L., Liu, Y. D., Chen, M., Li, J. K., Wu, X. L., & Zeng, W. M. (2017). Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. Journal of Bioscience and Bioengineering, 123(6), 714–721.
DOI 10.1016/j.jbiosc.2016.12.017