Released under All rights reserved
Copyright: © 2025 CISA Publisher
Aitken, C. M., Jones, D. M., & Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431(7006), 291–294.
DOI 10.1038/nature02922
Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Usha Rani, P., & Desneux, N. (2018). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91(1), 1–15.
DOI 10.1007/s10340-017-0898-0
Baczynski, T. P., & Pleissner, D. (2009). Bioremediation of chlorinated pesticide–contaminated soil using anaerobic sludges and surfactant addition. Journal of Environmental Science and Health, Part B, 45(1), 82–88.
DOI 10.1080/03601230903404572
Ben Laish, A., Kosicki, J. Z., & Yosef, R. (2025). Successful bioremediation of fuel-polluted seashore sand: A case study. Israel Journal of Ecology and Evolution, 71(4), 197–202.
DOI 10.1163/22244662-bja10106
Birgovan (Rhazzali), A. L., Lakatos, E. S., Cioca, L. I., Paul, N. L., Vatca, S. D., Kis, E., & Pacurariu, R. L. (2025). Harnessing Microbial Power for a Sustainable Future Food System. Microorganisms, 13(9), 2217.
DOI 10.3390/microorganisms13092217
Bôto, M. L., Magalhães, C., Perdigão, R., Alexandrino, D. A. M., Fernandes, J. P., Bernabeu, A. M., Ramos, S., Carvalho, M. F., Semedo, M., LaRoche, J., Almeida, C. M. R., & Mucha, A. P. (2021). Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Frontiers in Microbiology, 12.
DOI 10.3389/fmicb.2021.633659
Caniani, D., Caivano, M., Mazzone, G., Masi, S., & Mancini, I. M. (2021). Effect of site-specific conditions and operating parameters on the removal efficiency of petroleum-originating pollutants by using ozonation. Science of The Total Environment, 800, 149393–149393.
DOI 10.1016/j.scitotenv.2021.149393
Chen, C., Li, H., Cui, F., Wang, Z., Liu, X., Jiang, G., Cheng, T., Bai, R., & Song, L. (2022). Novel combination of bioleaching and persulfate for the removal of heavy metals from metallurgical industry sludge. Environmental Science and Pollution Research, 29(22), 33751–33763.
DOI 10.1007/s11356-021-18068-z
Derpsch, R., Kassam, A., Reicosky, D., Friedrich, T., Calegari, A., Basch, G., Gonzalez-Sanchez, E., & Dos Santos, D. R. (2024). Nature’s laws of declining soil productivity and Conservation Agriculture. Soil Security, 14, 100127.
DOI 10.1016/j.soisec.2024.100127
Dianatdar, F., & Etemadifar, Z. (2024). Recent Advances Towards Improved Microbial Bioremediation of Heavy Metal Pollution. In N. Kumar (Ed.), Heavy Metal Remediation (pp. 115–138). Springer Nature Switzerland.
DOI 10.1007/978-3-031-53688-5_6
Díaz-Rodríguez, A. M., Parra Cota, F. I., Cira Chávez, L. A., García Ortega, L. F., Estrada Alvarado, M. I., Santoyo, G., & de los Santos-Villalobos, S. (2025). Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants, 14(2).
DOI 10.3390/plants14020191
Dong, Y., Zan, J., & Lin, H. (2023). Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. Journal of Environmental Management, 344, 118511.
DOI 10.1016/j.jenvman.2023.118511
Fang, G., Si, Y., Tian, C., Zhang, G., & Zhou, D. (2012). Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environmental Science and Pollution Research, 19(3), 784–793.
DOI 10.1007/s11356-011-0597-y
Firincă, C., Zamfir, L.-G., Constantin, M., Răut, I., Capră, L., Popa, D., Jinga, M.-L., Baroi, A. M., Fierăscu, R. C., Corneli, N. O., Postolache, C., Doni, M., Gurban, A.-M., Jecu, L., & Șesan, T. E. (2023). Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. Journal of Xenobiotics, 14(1), 51–78.
DOI 10.3390/jox14010004
Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F., Mamba, B. B., & Barnard, T. G. (2009). Mitigation of Ca, Fe, and Mg loads in surface waters around mining areas using indigenous microorganism strains. Physics and Chemistry of the Earth, Parts A/B/C, 34(13–16), 825–829.
DOI 10.1016/j.pce.2009.07.005
Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F., Mamba, B. B., Marjanovic, L., & Barnard, T. G. (2010). A comprehensive study of physical and physiological parameters that affect bio-sorption of metal pollutants from aqueous solutions. Physics and Chemistry of the Earth, Parts A/B/C, 35(13–14), 672–678.
DOI 10.1016/j.pce.2010.07.008
Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382–399.
DOI 10.1016/j.jhazmat.2014.09.041
Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.
DOI 10.1099/mic.0.037143-0
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598.
DOI 10.1007/s13213-010-0117-1
Kaur, S., Kamli, M. R., & Ali, A. (2009). Diversity of Arsenate Reductase Genes (arsC Genes) from Arsenic-Resistant Environmental Isolates of E. coli. Current Microbiology, 59(3), 288–294.
DOI 10.1007/s00284-009-9432-9
Keren, R., Méheust, R., Santini, J. M., Thomas, A., West-Roberts, J., Banfield, J. F., & Alvarez-Cohen, L. (2022). Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes. Computational and Structural Biotechnology Journal, 20, 559–572.
DOI 10.1016/j.csbj.2021.12.040
Kumar, B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5(6), 867–876.
DOI 10.1007/s13205-015-0293-6
Kundu, P., & Biswas, S. (2025). Securing soil health as the foundation for strengthening planetary health. Soil Security, 21, 100205.
DOI 10.1016/j.soisec.2025.100205
Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154–171.
DOI 10.1016/j.wmb.2024.07.005
Lee, D. J., Lee, S. J., Kang, G., Park, M., Joo, Y. H., Yeom, J. H., & Chung, N. (2025). Performance evaluation of biowashing pilot reactor for remediation of crude oil-contaminated soil of Kuwait. Applied Biological Chemistry, 68(1), 2.
DOI 10.1186/s13765-024-00978-4
Li, D., He, H., Xu, Z., & Deng, H. (2024). Investigation on the effect of Cu2+, Mn2+ and Fe3+ on biotreatment of Cr(VI) by Shewanella oneidensis and Bacillus subtilis in bimetallic system. Surfaces and Interfaces, 44, 103742.
DOI 10.1016/j.surfin.2023.103742
Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. Fermentation, 9(9), 847.
DOI 10.3390/fermentation9090847
Lofthus, S., Bakke, I., Greer, C. W., & Brakstad, O. G. (2021). Biodegradation of weathered crude oil by microbial communities in solid and melted sea ice. Marine Pollution Bulletin, 172, 112823–112823.
DOI 10.1016/j.marpolbul.2021.112823
Luo, J., Jiang, L., Wei, Y., Li, Y., Yang, G., Li, Y.-Y., & Liu, J. (2023). EDTA-enhanced alkaline anaerobic fermentation of landfill leachate-derived waste activated sludge for short-chain fatty acids production: Metals chelation and EPSs destruction. Journal of Environmental Management, 334, 117523–117523.
DOI 10.1016/j.jenvman.2023.117523
Magot, M., Ollivier, B., & Patel, B. K. C. (2000). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 77(2), 103–116.
DOI 10.1023/A:1002434330514
Majumder, A., Bhattacharyya, K., Kole, S. C., & Ghosh, S. (2013). Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India. Environmental Science and Pollution Research, 20(8), 5645–5653.
DOI 10.1007/s11356-013-1560-x
Martínez-Cuesta, R., Conlon, R., Wang, M., Blanco-Romero, E., Durán, D., Redondo-Nieto, M., Dowling, D., Garrido-Sanz, D., Martin, M., Germaine, K., & Rivilla, R. (2023). Field scale biodegradation of total petroleum hydrocarbons and soil restoration by Ecopiles: Microbiological analysis of the process. Frontiers in Microbiology, 14, 1158130.
DOI 10.3389/fmicb.2023.1158130
Molaey, R., Appels, L., Yesil, H., Tugtas, A. E., & Çalli, B. (2024). Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. Science of The Total Environment, 955, 177020–177020.
DOI 10.1016/j.scitotenv.2024.177020
Naiel, M. A. E., Taher, E. S., Rashed, F., Ghazanfar, S., Shehata, A. M., Mohammed, N. A., Pascalau, R., Smuleac, L., Ibrahim, A. M., Abdeen, A., & Shukry, M. (2024). The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon, 10(17), e36314–e36314.
DOI 10.1016/j.heliyon.2024.e36314
Navarro, C., Navarro, M. A., & Leyva, A. (2022). Arsenic perception and signaling: The yet unexplored world. Frontiers in Plant Science, 13.
DOI 10.3389/fpls.2022.993484
Nikolopoulou, M., & Kalogerakis, N. (2016). Biostimulation Strategies for Enhanced Bioremediation of Marine Oil Spills Including Chronic Pollution. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation (pp. 1–10). Springer International Publishing.
DOI 10.1007/978-3-319-44535-9_7-1
Olak-Kucharczyk, M., Festinger, N., & Smułek, W. (2023). Application of Ozonation-Biodegradation Hybrid System for Polycyclic Aromatic Hydrocarbons Degradation. International Journal of Environmental Research and Public Health, 20(7), 5347.
DOI 10.3390/ijerph20075347
Pathak, A., Kothari, R., Dastidar, M. G., Sreekrishnan, T. R., & Kim, D. J. (2014). Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: Continuous stirred tank reactor studies. Journal of Environmental Science and Health, Part A, 49(1), 93–100.
DOI 10.1080/10934529.2013.824737
Periferakis, A., Caruntu, A., Periferakis, A.-T., Scheau, A.-E., Badarau, I. A., Caruntu, C., & Scheau, C. (2022). Availability, Toxicology and Medical Significance of Antimony. International Journal of Environmental Research and Public Health, 19(8), 4669–4669.
DOI 10.3390/ijerph19084669
Priya, P., Aneesh, B., & Harikrishnan, K. (2021). Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. Journal of Microbiological Methods, 185, 106215.
DOI 10.1016/j.mimet.2021.106215
Sarkodie, E. K., Jiang, L., Li, K., Yang, J., Guo, Z., Shi, J., Deng, Y., Liu, H., Jiang, H., Liang, Y., Yin, H., & Liu, X. (2022). A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Frontiers in Microbiology, 13, 1049277.
DOI 10.3389/fmicb.2022.1049277
Singh, D. P., Singh, H. B., & Prabha, R. (2016). Microbial inoculants in sustainable agricultural productivity: Vol. 1: Research perspectives.
DOI 10.1007/978-81-322-2647-5
Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Science, 6. https://www.frontiersin.org/article/10.3389/fpls.2015.01143
Skinner, J., Delgado, A. G., Hyman, M., & Chu, M.-Y. J. (2024). Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. Science of The Total Environment, 925, 171667–171667.
DOI 10.1016/j.scitotenv.2024.171667
Solanki, K., Choudhary, S. K., Aakash, Singh, V., Singh, A., & Birla, D. (2023). Response of Bacillus megaterium and Bacillus mucilaginosus Strains on Yield and Quality of Soybean. International Journal of Environment and Climate Change, 13(11), 776–783.
DOI 10.9734/ijecc/2023/v13i113226
Sonawane, J. M., Rai, A. K., Sharma, M., Tripathi, M., & Prasad, R. (2022). Microbial biofilms: Recent advances and progress in environmental bioremediation. Science of The Total Environment, 824, 153843–153843.
DOI 10.1016/j.scitotenv.2022.153843
Sui, H., Li, X., Huang, G., & Jiang, B. (2006). A study on cometabolic bioventing for the in situ remediation of trichloroethylene. Environmental Geochemistry and Health, 28(1–2), 147–152.
DOI 10.1007/s10653-005-9025-x
Surpura, R. M., Rathore, A. P., Patel, S. K., Jangir, S., Goswami, D., Rawal, R., & Pandya, H. A. (2025). Harnessing Microbial Properties of Natural Farming Components for Soil and Crop Health Improvement: A Review. Agricultural Reviews, Of.
DOI 10.18805/ag.R-2764
Tamizhdurai, P., Sakthipriya, N., Sivagami, K., Rajasekhar, B., & Nambi, I. M. (2022). Field studies on monitoring the marine oil spill bioremediation site in Chennai. Process Safety and Environmental Protection, 163, 227–235.
DOI 10.1016/j.psep.2022.05.005
Tribedi, P., Goswami, M., Chakraborty, P., Mukherjee, K., Mitra, G., Bhattacharyya, P., & Dey, S. (2018). Bioaugmentation and biostimulation: A potential strategy for environmental remediation. Journal of Microbiology & Experimentation, 6(5).
DOI 10.15406/jmen.2018.06.00219
Vassilev, I., Averesch, N. J. H., Ledezma, P., & Kokko, M. (2021). Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnology Advances, 48, 107728–107728.
DOI 10.1016/j.biotechadv.2021.107728
Yaman, C. (2020). Performance and Kinetics of Bioaugmentation, Biostimulation, and Natural Attenuation Processes for Bioremediation of Crude Oil-Contaminated Soils. Processes, 8(8), 883–883.
DOI 10.3390/pr8080883
Zhou, J., Zheng, G., Wong, J. W. C., & Zhou, L. (2013). Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching. Bioresource Technology, 132, 217–223.
DOI 10.1016/j.biortech.2012.12.179
Arun Dhanasekaran, Kritika Tiwari, Arpita Bhange, Shankha Shubhra Ghosh and Krishnan Kannabiran
Published 11 Dec 2025Maria Cristina Lavagnolo, Federica Ruggero, Alberto Pivato, Carlo Boaretti and Alessandro Chiumenti
Published 11 Dec 2025| Title | Support | Price |
|---|