an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

ECO-RESTORATION THROUGH INDIGENOUS MICROORGANISMS: A REVIEW OF ADVANCES IN BIOREMEDIATION AND WASTE CONVERSION

  • Kirat Kumar Ganguly - Department of Microbiology, Michael Madhusudan Memorial College, India
  • Sekhar Pal - Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, India
  • Koushik Mukherjee - Department of Microbiology, Kalyani Mahavidyalaya, India

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

Abstract: Environmental protection from hazardous and toxic chemical deposition is a critical global concern. Bioremediation, an economical and eco-friendly method, has emerged as a promising solution. Among various strategies, the use of Indigenous Microorganisms (IMOs)—microbes naturally present in a given environment—offers significant advantages. These autochthonous microbial populations play essential roles in biodegradation, bioleaching, biocomposting, nitrogen fixation, toxicity reduction, fertility enhancement, and the synthesis of plant growth-promoting hormones. IMOs contribute to mineral extraction, sustainable agriculture, and effective waste management across various regions. Their absence would negatively impact all life forms and ecosystem functions. This chapter emphasizes the importance of conserving and utilizing indigenous microbes to transform waste into valuable bioresources, thereby facilitating environmental restoration. The diversity of IMOs depends on their collection and isolation methods, which are influenced by specific environmental conditions. Overall, the promotion of IMO-based technologies can bridge the gap between anthropogenic waste generation and ecological balance.

Keywords


Editorial History

  • Received: 28 Aug 2025
  • Revised: 13 Nov 2025
  • Accepted: 24 Nov 2025
  • Available online: 11 Dec 2025

References

Aitken, C. M., Jones, D. M., & Larter, S. R. (2004). Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431(7006), 291–294.
DOI 10.1038/nature02922

Athanassiou, C. G., Kavallieratos, N. G., Benelli, G., Losic, D., Usha Rani, P., & Desneux, N. (2018). Nanoparticles for pest control: Current status and future perspectives. Journal of Pest Science, 91(1), 1–15.
DOI 10.1007/s10340-017-0898-0

Baczynski, T. P., & Pleissner, D. (2009). Bioremediation of chlorinated pesticide–contaminated soil using anaerobic sludges and surfactant addition. Journal of Environmental Science and Health, Part B, 45(1), 82–88.
DOI 10.1080/03601230903404572

Ben Laish, A., Kosicki, J. Z., & Yosef, R. (2025). Successful bioremediation of fuel-polluted seashore sand: A case study. Israel Journal of Ecology and Evolution, 71(4), 197–202.
DOI 10.1163/22244662-bja10106

Birgovan (Rhazzali), A. L., Lakatos, E. S., Cioca, L. I., Paul, N. L., Vatca, S. D., Kis, E., & Pacurariu, R. L. (2025). Harnessing Microbial Power for a Sustainable Future Food System. Microorganisms, 13(9), 2217.
DOI 10.3390/microorganisms13092217

Bôto, M. L., Magalhães, C., Perdigão, R., Alexandrino, D. A. M., Fernandes, J. P., Bernabeu, A. M., Ramos, S., Carvalho, M. F., Semedo, M., LaRoche, J., Almeida, C. M. R., & Mucha, A. P. (2021). Harnessing the Potential of Native Microbial Communities for Bioremediation of Oil Spills in the Iberian Peninsula NW Coast. Frontiers in Microbiology, 12.
DOI 10.3389/fmicb.2021.633659

Caniani, D., Caivano, M., Mazzone, G., Masi, S., & Mancini, I. M. (2021). Effect of site-specific conditions and operating parameters on the removal efficiency of petroleum-originating pollutants by using ozonation. Science of The Total Environment, 800, 149393–149393.
DOI 10.1016/j.scitotenv.2021.149393

Chen, C., Li, H., Cui, F., Wang, Z., Liu, X., Jiang, G., Cheng, T., Bai, R., & Song, L. (2022). Novel combination of bioleaching and persulfate for the removal of heavy metals from metallurgical industry sludge. Environmental Science and Pollution Research, 29(22), 33751–33763.
DOI 10.1007/s11356-021-18068-z

Derpsch, R., Kassam, A., Reicosky, D., Friedrich, T., Calegari, A., Basch, G., Gonzalez-Sanchez, E., & Dos Santos, D. R. (2024). Nature’s laws of declining soil productivity and Conservation Agriculture. Soil Security, 14, 100127.
DOI 10.1016/j.soisec.2024.100127

Dianatdar, F., & Etemadifar, Z. (2024). Recent Advances Towards Improved Microbial Bioremediation of Heavy Metal Pollution. In N. Kumar (Ed.), Heavy Metal Remediation (pp. 115–138). Springer Nature Switzerland.
DOI 10.1007/978-3-031-53688-5_6

Díaz-Rodríguez, A. M., Parra Cota, F. I., Cira Chávez, L. A., García Ortega, L. F., Estrada Alvarado, M. I., Santoyo, G., & de los Santos-Villalobos, S. (2025). Microbial Inoculants in Sustainable Agriculture: Advancements, Challenges, and Future Directions. Plants, 14(2).
DOI 10.3390/plants14020191

Dong, Y., Zan, J., & Lin, H. (2023). Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. Journal of Environmental Management, 344, 118511.
DOI 10.1016/j.jenvman.2023.118511

Fang, G., Si, Y., Tian, C., Zhang, G., & Zhou, D. (2012). Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environmental Science and Pollution Research, 19(3), 784–793.
DOI 10.1007/s11356-011-0597-y

Firincă, C., Zamfir, L.-G., Constantin, M., Răut, I., Capră, L., Popa, D., Jinga, M.-L., Baroi, A. M., Fierăscu, R. C., Corneli, N. O., Postolache, C., Doni, M., Gurban, A.-M., Jecu, L., & Șesan, T. E. (2023). Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. Journal of Xenobiotics, 14(1), 51–78.
DOI 10.3390/jox14010004

Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F., Mamba, B. B., & Barnard, T. G. (2009). Mitigation of Ca, Fe, and Mg loads in surface waters around mining areas using indigenous microorganism strains. Physics and Chemistry of the Earth, Parts A/B/C, 34(13–16), 825–829.
DOI 10.1016/j.pce.2009.07.005

Fosso-Kankeu, E., Mulaba-Bafubiandi, A. F., Mamba, B. B., Marjanovic, L., & Barnard, T. G. (2010). A comprehensive study of physical and physiological parameters that affect bio-sorption of metal pollutants from aqueous solutions. Physics and Chemistry of the Earth, Parts A/B/C, 35(13–14), 672–678.
DOI 10.1016/j.pce.2010.07.008

Frascari, D., Zanaroli, G., & Danko, A. S. (2015). In situ aerobic cometabolism of chlorinated solvents: A review. Journal of Hazardous Materials, 283, 382–399.
DOI 10.1016/j.jhazmat.2014.09.041

Gadd, G. M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.
DOI 10.1099/mic.0.037143-0

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598.
DOI 10.1007/s13213-010-0117-1

Kaur, S., Kamli, M. R., & Ali, A. (2009). Diversity of Arsenate Reductase Genes (arsC Genes) from Arsenic-Resistant Environmental Isolates of E. coli. Current Microbiology, 59(3), 288–294.
DOI 10.1007/s00284-009-9432-9

Keren, R., Méheust, R., Santini, J. M., Thomas, A., West-Roberts, J., Banfield, J. F., & Alvarez-Cohen, L. (2022). Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes. Computational and Structural Biotechnology Journal, 20, 559–572.
DOI 10.1016/j.csbj.2021.12.040

Kumar, B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5(6), 867–876.
DOI 10.1007/s13205-015-0293-6

Kundu, P., & Biswas, S. (2025). Securing soil health as the foundation for strengthening planetary health. Soil Security, 21, 100205.
DOI 10.1016/j.soisec.2025.100205

Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Management Bulletin, 2(3), 154–171.
DOI 10.1016/j.wmb.2024.07.005

Lee, D. J., Lee, S. J., Kang, G., Park, M., Joo, Y. H., Yeom, J. H., & Chung, N. (2025). Performance evaluation of biowashing pilot reactor for remediation of crude oil-contaminated soil of Kuwait. Applied Biological Chemistry, 68(1), 2.
DOI 10.1186/s13765-024-00978-4

Li, D., He, H., Xu, Z., & Deng, H. (2024). Investigation on the effect of Cu2+, Mn2+ and Fe3+ on biotreatment of Cr(VI) by Shewanella oneidensis and Bacillus subtilis in bimetallic system. Surfaces and Interfaces, 44, 103742.
DOI 10.1016/j.surfin.2023.103742

Lin, Z., Cong, W., & Zhang, J. (2023). Biobutanol Production from Acetone–Butanol–Ethanol Fermentation: Developments and Prospects. Fermentation, 9(9), 847.
DOI 10.3390/fermentation9090847

Lofthus, S., Bakke, I., Greer, C. W., & Brakstad, O. G. (2021). Biodegradation of weathered crude oil by microbial communities in solid and melted sea ice. Marine Pollution Bulletin, 172, 112823–112823.
DOI 10.1016/j.marpolbul.2021.112823

Luo, J., Jiang, L., Wei, Y., Li, Y., Yang, G., Li, Y.-Y., & Liu, J. (2023). EDTA-enhanced alkaline anaerobic fermentation of landfill leachate-derived waste activated sludge for short-chain fatty acids production: Metals chelation and EPSs destruction. Journal of Environmental Management, 334, 117523–117523.
DOI 10.1016/j.jenvman.2023.117523

Magot, M., Ollivier, B., & Patel, B. K. C. (2000). Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 77(2), 103–116.
DOI 10.1023/A:1002434330514

Majumder, A., Bhattacharyya, K., Kole, S. C., & Ghosh, S. (2013). Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India. Environmental Science and Pollution Research, 20(8), 5645–5653.
DOI 10.1007/s11356-013-1560-x

Martínez-Cuesta, R., Conlon, R., Wang, M., Blanco-Romero, E., Durán, D., Redondo-Nieto, M., Dowling, D., Garrido-Sanz, D., Martin, M., Germaine, K., & Rivilla, R. (2023). Field scale biodegradation of total petroleum hydrocarbons and soil restoration by Ecopiles: Microbiological analysis of the process. Frontiers in Microbiology, 14, 1158130.
DOI 10.3389/fmicb.2023.1158130

Molaey, R., Appels, L., Yesil, H., Tugtas, A. E., & Çalli, B. (2024). Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. Science of The Total Environment, 955, 177020–177020.
DOI 10.1016/j.scitotenv.2024.177020

Naiel, M. A. E., Taher, E. S., Rashed, F., Ghazanfar, S., Shehata, A. M., Mohammed, N. A., Pascalau, R., Smuleac, L., Ibrahim, A. M., Abdeen, A., & Shukry, M. (2024). The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon, 10(17), e36314–e36314.
DOI 10.1016/j.heliyon.2024.e36314

Navarro, C., Navarro, M. A., & Leyva, A. (2022). Arsenic perception and signaling: The yet unexplored world. Frontiers in Plant Science, 13.
DOI 10.3389/fpls.2022.993484

Nikolopoulou, M., & Kalogerakis, N. (2016). Biostimulation Strategies for Enhanced Bioremediation of Marine Oil Spills Including Chronic Pollution. In Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation (pp. 1–10). Springer International Publishing.
DOI 10.1007/978-3-319-44535-9_7-1

Olak-Kucharczyk, M., Festinger, N., & Smułek, W. (2023). Application of Ozonation-Biodegradation Hybrid System for Polycyclic Aromatic Hydrocarbons Degradation. International Journal of Environmental Research and Public Health, 20(7), 5347.
DOI 10.3390/ijerph20075347

Pathak, A., Kothari, R., Dastidar, M. G., Sreekrishnan, T. R., & Kim, D. J. (2014). Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: Continuous stirred tank reactor studies. Journal of Environmental Science and Health, Part A, 49(1), 93–100.
DOI 10.1080/10934529.2013.824737

Periferakis, A., Caruntu, A., Periferakis, A.-T., Scheau, A.-E., Badarau, I. A., Caruntu, C., & Scheau, C. (2022). Availability, Toxicology and Medical Significance of Antimony. International Journal of Environmental Research and Public Health, 19(8), 4669–4669.
DOI 10.3390/ijerph19084669

Priya, P., Aneesh, B., & Harikrishnan, K. (2021). Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health. Journal of Microbiological Methods, 185, 106215.
DOI 10.1016/j.mimet.2021.106215

Sarkodie, E. K., Jiang, L., Li, K., Yang, J., Guo, Z., Shi, J., Deng, Y., Liu, H., Jiang, H., Liang, Y., Yin, H., & Liu, X. (2022). A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Frontiers in Microbiology, 13, 1049277.
DOI 10.3389/fmicb.2022.1049277

Singh, D. P., Singh, H. B., & Prabha, R. (2016). Microbial inoculants in sustainable agricultural productivity: Vol. 1: Research perspectives.
DOI 10.1007/978-81-322-2647-5

Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Frontiers in Plant Science, 6. https://www.frontiersin.org/article/10.3389/fpls.2015.01143

Skinner, J., Delgado, A. G., Hyman, M., & Chu, M.-Y. J. (2024). Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. Science of The Total Environment, 925, 171667–171667.
DOI 10.1016/j.scitotenv.2024.171667

Solanki, K., Choudhary, S. K., Aakash, Singh, V., Singh, A., & Birla, D. (2023). Response of Bacillus megaterium and Bacillus mucilaginosus Strains on Yield and Quality of Soybean. International Journal of Environment and Climate Change, 13(11), 776–783.
DOI 10.9734/ijecc/2023/v13i113226

Sonawane, J. M., Rai, A. K., Sharma, M., Tripathi, M., & Prasad, R. (2022). Microbial biofilms: Recent advances and progress in environmental bioremediation. Science of The Total Environment, 824, 153843–153843.
DOI 10.1016/j.scitotenv.2022.153843

Sui, H., Li, X., Huang, G., & Jiang, B. (2006). A study on cometabolic bioventing for the in situ remediation of trichloroethylene. Environmental Geochemistry and Health, 28(1–2), 147–152.
DOI 10.1007/s10653-005-9025-x

Surpura, R. M., Rathore, A. P., Patel, S. K., Jangir, S., Goswami, D., Rawal, R., & Pandya, H. A. (2025). Harnessing Microbial Properties of Natural Farming Components for Soil and Crop Health Improvement: A Review. Agricultural Reviews, Of.
DOI 10.18805/ag.R-2764

Tamizhdurai, P., Sakthipriya, N., Sivagami, K., Rajasekhar, B., & Nambi, I. M. (2022). Field studies on monitoring the marine oil spill bioremediation site in Chennai. Process Safety and Environmental Protection, 163, 227–235.
DOI 10.1016/j.psep.2022.05.005

Tribedi, P., Goswami, M., Chakraborty, P., Mukherjee, K., Mitra, G., Bhattacharyya, P., & Dey, S. (2018). Bioaugmentation and biostimulation: A potential strategy for environmental remediation. Journal of Microbiology & Experimentation, 6(5).
DOI 10.15406/jmen.2018.06.00219

Vassilev, I., Averesch, N. J. H., Ledezma, P., & Kokko, M. (2021). Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnology Advances, 48, 107728–107728.
DOI 10.1016/j.biotechadv.2021.107728

Yaman, C. (2020). Performance and Kinetics of Bioaugmentation, Biostimulation, and Natural Attenuation Processes for Bioremediation of Crude Oil-Contaminated Soils. Processes, 8(8), 883–883.
DOI 10.3390/pr8080883

Zhou, J., Zheng, G., Wong, J. W. C., & Zhou, L. (2013). Degradation of inhibitory substances in sludge by Galactomyces sp. Z3 and the role of its extracellular polymeric substances in improving bioleaching. Bioresource Technology, 132, 217–223.
DOI 10.1016/j.biortech.2012.12.179