Released under CC BY-NC-ND
Copyright: © 2021 CISA Publisher
Bonifazi, G., Gasbarrone, R., Serranti, S., 2021. Detecting contaminants in post-consumer plastic packaging waste by a nir hyperspectral imaging-based cascade detection approach. Detritus 15, 94–106.
DOI 10.31025/2611-4135/2021.14086
Bunge, R., 2019. Recovery of metals from waste incinerator bottom ash
CEN, 2015. EN 15002. Characterization of waste - Preparation of test portions from the laboratory sample
CEN, 2006. CEN/TR 15310-1. Characterization of waste — Sampling of waste materials — Part 1: Guidance on selection and application of criteria for sampling under various conditions
CENELEC, 2015. CLC/TS 50625-3-1. Requirements for the collection, logistics and treatment of WEEE - Part 3-1: Specification relating to depollution
Danish Standards, 2013. DS 3077. Representative sampling - Horizontal standard
Gy, P., 2004. Sampling of discrete materials: II. Quantitative approach - Sampling of zero-dimensional objects. Chemom. Intell. Lab. Syst. 74, 25–38.
DOI 10.1016/j.chemolab.2004.05.015
Haynes, R.J., Belyaeva, O.N., Zhou, Y.F., 2015. Particle size fractionation as a method for characterizing the nutrient content of municipal green waste used for composting. Waste Manag. 35, 48–54.
DOI 10.1016/j.wasman.2014.10.002
Hennebert, P., 2020. Concentrations of brominated flame retardants in plastics of electrical and electronic equipment , vehicles , construction , textiles and non-food packaging : a review of occurrence and management. Detritus 12, 34–50.
Hennebert, P., Beggio, G., 2021. Sampling and sub-sampling of granular waste: size of a representative sample in terms of number of particles. Detritus 17, 30–41.
Khodier, K., Viczek, S.A., Curtis, A., Aldrian, A., O’Leary, P., Lehner, M., Sarc, R., 2020. Sampling and analysis of coarsely shredded mixed commercial waste. Part I: procedure, particle size and sorting analysis. Int. J. Environ. Sci. Technol. 17, 959–972.
DOI 10.1007/s13762-019-02526-w
Kroell, N., Chen, X., Maghmoumi, A., Koenig, M., Feil, A., Greiff, K., 2021. Sensor-based particle mass prediction of lightweight packaging waste using machine learning algorithms. Waste Manag. 136, 253–265.
DOI 10.1016/j.wasman.2021.10.017
Pivato, A., Beggio, G., Raga, R., Soldera, V., 2019. Forensic assessment of HP14 classification of waste: evaluation of two standards for preparing water extracts from solid waste to be tested in aquatic bioassays. Environ. Forensics 20, 275–285.
DOI 10.1080/15275922.2019.1630517
Priya, A., Hait, S., 2021. Characterization of particle size-based deportment of metals in various waste printed circuit boards towards metal recovery. Clean. Mater. 1, 100013.
DOI 10.1016/j.clema.2021.100013
Viczek, S.A., Kandlbauer, L., Khodier, K., Aldrian, A., Sarc, R., 2021a. Sampling and analysis of coarsely shredded mixed commercial waste. Part II: particle size-dependent element determination. Int. J. Environ. Sci. Technol.
DOI 10.1007/s13762-021-03567-w
Viczek, S.A., Khodier, K., Kandlbauer, L., Aldrian, A., Redhammer, G., Tippelt, G., Sarc, R., 2021b. The particle size-dependent distribution of chemical elements in mixed commercial waste and implications for enhancing SRF quality. Sci. Total Environ. 776, 145343.
DOI 10.1016/j.scitotenv.2021.145343
Wavrer, P., 2018. Theory of Sampling (TOS) applied to characterisation of Municipal Solid Waste (MSW)—a case study from France. TOS Forum 2013, 3.
DOI 10.1255/tosf.101
Weissenbach, T., Sarc, R., 2022. Particle-specific characterisation of non-hazardous, coarse-shredded mixed waste for real-time quality assurance. J. Environ. Manage. 301, 113878.
DOI 10.1016/j.jenvman.2021.113878
Muhammad Angga Kusuma, Abdallah Nassour and Michael Nelles
Published 31 Mar 2022Ana Ramos
Published 31 Mar 2022Pierre Hennebert, Anne-Françoise Stoffel, Mathieu Hubner, Daniel Fortmann, Patricia Merdy and Giovanni Beggio
Published 31 Mar 2022Title | Support | Price |
---|