an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Larisse Suzy Silva de Oliveira - Department of Environmental Engineering, Federal University of Espírito Santo, Brazil
  • Maria Tereza Weitzel Dias Carneiro Lima - Department of Chemistry, Federal University of Espírito Santo, Brazil
  • Luciana Yamane - Department of Environmental Engineer , Federal University of Espírito Santo, Brazil
  • Renato Ribeiro Siman - Department of Environmental Engineering, Federal University of Espirito Santo, Brazil

DOI 10.31025/2611-4135/2020.13939

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 11 Nov 2019
  • Revised: 17 Feb 2020
  • Accepted: 24 Feb 2020
  • Available online: 31 Mar 2020


The growth of the photovoltaic sector has stood out among renewable sources of energy, due to technological innovations that have brought about cost reductions. Thus, this paper aimed to analyze the technical feasibility of silver recovery from photovoltaic cells using acid leaching, followed by an evaluation of the chemical and electrochemical precipitation processes to analyze their efficiencies. As a primary objective of this work, the gravimetric composition and the metal concentration (Ag, Al, Pb, Cu, and Fe) in the photovoltaic cells were first determined, developing the basis for future research on photovoltaic panels recycling Subsequently, the influence of HNO3 concentration (1-10 mol/L), temperature (25-60ºC), and reaction time were evaluated. A new research application used a statistical tool, the Central Composite Rotational Design (CCRD), as well as samples of different brands and models of photovoltaic panels, in order to ensure the experimental validity. As a highlight, the analysis of the composition of the photovoltaic cells, applying the HNO2CO3, as well as electroprecipitation, made it possible to extract more than 99% of silver in solution, being a primary novelty of this study. Therefore, the studied pathway allowed for the recovery of 99.98% of the silver present in the photovoltaic cells.



Apergis, I., & Apergis, N. (2019). Silver prices and solar energy production. Environmental Science and Pollution Research, 26(9), 8525–8532.
DOI 10.1007/s11356-019-04357-1

Azeumo, M. F., Germana, C., Ippolito, N. M., Franco, M., Luigi, P., & Settimio, S. (2019). Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells, 193, 314–319.
DOI 10.1016/J.SOLMAT.2019.01.035

Chen, W.-S., Chen, Y.-J., Yueh, K.-C., Cheng, C.-P., & Chang, T.-C. (2020). Recovery of valuable metal from Photovoltaic solar cells through extraction. IOP Conference Series: Materials Science and Engineering, 720, 012007.
DOI 10.1088/1757-899X/720/1/012007

Cucchiella, F., D’Adamo, I., Lenny Koh, S. C., & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263–272.
DOI 10.1016/j.rser.2015.06.010

D’Adamo, I., Miliacca, M., & Rosa, P. (2017). Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. International Journal of Photoenergy, 2017, 1–7.
DOI 10.1155/2017/4184676

Del Pero, F., Delogu, M., Berzi, L., & Escamilla, M. (2019). Innovative device for mechanical treatment of End of Life photovoltaic panels: Technical and environmental analysis. Waste Management.
DOI 10.1016/j.wasman.2019.06.037

Deng, R., Chang, N. L., Ouyang, Z., & Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews, 109(April), 532–550.
DOI 10.1016/j.rser.2019.04.020

Dias, P., Javimczik, S., Benevit, M., & Veit, H. (2017). Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management, 60, 716–722.
DOI 10.1016/J.WASMAN.2016.08.036

Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. Waste Management, 57, 220–225.
DOI 10.1016/j.wasman.2016.03.016

Domínguez, A., & Geyer, R. (2019). Photovoltaic waste assessment of major photovoltaic installations in the United States of America. Renewable Energy, 133, 1188–1200.
DOI 10.1016/j.renene.2018.08.063

Europe, S. P. (2018). Global Market Outlook for Solar Power 2018-2022.

Fiandra, V., Sannino, L., Andreozzi, C., Corcelli, F., & Graditi, G. (2019). Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Management, 87, 97–107.
DOI 10.1016/j.wasman.2019.02.004

Gangwar, P., Kumar, N. M., Singh, A. K., Jayakumar, A., & Mathew, M. (2019). Solar photovoltaic tree and its end-of-life management using thermal and chemical treatments for material recovery. Case Studies in Thermal Engineering.
DOI 10.1016/j.csite.2019.100474

Hubau, A., Chagnes, A., Minier, M., Touzé, S., Chapron, S., & Guezennec, A.-G. (2019). Recycling-oriented methodology to sample and characterize the metal composition of waste Printed Circuit Boards. Waste Management, 91, 62–71.
DOI 10.1016/J.WASMAN.2019.04.041

International Energy Agency. (2013). Trends 2013 in Photovoltaic Applications: photovoltaic power systems programme.

Joda, N. N., & Rashchi, F. (2012). Recovery of ultra fine grained silver and copper from PC board scraps. Separation and Purification Technology, 92, 36–42.
DOI 10.1016/j.seppur.2012.03.022

Kang, S., Yoo, S., Lee, J., Boo, B., & Ryu, H. (2012). Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renewable Energy, 47, 152–159.
DOI 10.1016/j.renene.2012.04.030

Kasper, A. C., Berselli, G. B. T., Freitas, B. D., Tenório, J. A. S., Bernardes, A. M., & Veit, H. M. (2011). Printed wiring boards for mobile phones: Characterization and recycling of copper. Waste Management, 31(12), 2536–2545.
DOI 10.1016/j.wasman.2011.08.013

Kuczyńska-Łażewska, A., Klugmann-Radziemska, E., Sobczak, Z., & Klimczuk, T. (2018a). Recovery of silver metallization from damaged silicon cells. Solar Energy Materials and Solar Cells, 176, 190–195.
DOI 10.1016/J.SOLMAT.2017.12.004

Kuczyńska-Łażewska, A., Klugmann-Radziemska, E., Sobczak, Z., & Klimczuk, T. (2018b). Recovery of silver metallization from damaged silicon cells. Solar Energy Materials and Solar Cells, 176, 190–195.
DOI 10.1016/j.solmat.2017.12.004

Kumar, S., & Sarkan, B. (2013). Design for reliability with weibull analysis for photovoltaic modules. Int. J. Curr. Eng. Technol, 129–134

Larsen, K. (2009). End-of-life PV: then what? Renewable Energy Focus.
DOI 10.1016/S1755-0084(09)70154-1

Latunussa, C. E. L., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells, 156, 101–111.
DOI 10.1016/j.solmat.2016.03.020

Lee, C.-H., Chang, Y.-W., Popuri, S. R., Hung, C.-E., Liao, C.-H., Chang, J.-E., & Chen, W.-S. (2018). Environmental Engineering and Management (Vol. 17, Issue 3).;

Lee, C. H., Hung, C. E., Tsai, S. L., Popuri, S. R., & Liao, C. H. (2013). Resource recovery of scrap silicon solar battery cell. Waste Management and Research, 31(5), 518–524.
DOI 10.1177/0734242X13479433

Mahmoudi, S., Huda, N., Alavi, Z., Islam, M. T., & Behnia, M. (2019). End-of-life photovoltaic modules: A systematic quantitative literature review. In Resources, Conservation and Recycling.
DOI 10.1016/j.resconrec.2019.03.018

Monier, V., & Hestin, M. (2011). Study on Photovoltaic panels supplementing the impact assessment for a recast of the WEEE directive. In Bio Intelligence Service (Issue April)

Motta, V. C. N. da. (2018). Extração de cobre de placas de circuito impresso de tablets por lixiviação ácida e precipitação seletiva. Federal University of Espírito Santo

Nevala, S. M., Hamuyuni, J., Junnila, T., Sirviö, T., Eisert, S., Wilson, B. P., Serna-Guerrero, R., & Lundström, M. (2019). Electro-hydraulic fragmentation vs conventional crushing of photovoltaic panels – Impact on recycling. Waste Management, 87, 43–50.
DOI 10.1016/j.wasman.2019.01.039

Olson, C.L.; Geerligs, L.J.; Goris, M.J.A.A.; Bennett, I.J.; Clyncke, J. (2013). Current and future priorites for mass and material in silicon PV moduloe. ECN Solar Energy, 4629–4633

Padoan, F. C. S. M., Altimari, P., & Pagnanelli, F. (2019). Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy, 177(December 2018), 746–761.
DOI 10.1016/j.solener.2018.12.003

Paiano, A. (2015). Photovoltaic waste assessment in Italy. Renewable and Sustainable Energy Reviews, 41, 99–112.
DOI 10.1016/j.rser.2014.07.208

Prado, P. F. A., & Ruotolo, L. A. M. (2016). Silver recovery from simulated photographic baths by electrochemical deposition avoiding Ag2S formation. Journal of Environmental Chemical Engineering, 4(3), 3283–3292.
DOI 10.1016/j.jece.2016.06.035

Raju, T., Chung, S. J., & Moon, I. S. (2009). Electrochemical recovery of silver from waste aqueous Ag(I)/Ag(II) redox mediator solution used in mediated electro oxidation process. Korean Journal of Chemical Engineering, 26(4), 1053–1057.
DOI 10.2478/s11814-009-0175-x

Rebelllo, R. Z. (2018). Recuperação de ouro e prata de lâmpadas de LED inservíveis por lixiviação em tiouréia. Federal University of Espírito Santo

Rojas, C. E. B., & Martins, A. H. (2010). Reciclagem de sucata de jóias para a recuperação hidrometalúrgica de ouro e prata. Metalurgia & Materiais, 1–7

Santos, J. D., & Alonso-García, M. C. (2018). Projection of the photovoltaic waste in Spain until 2050. Journal of Cleaner Production, 196, 1613–1628.
DOI 10.1016/j.jclepro.2018.05.252

Savvilotidou, V., & Gidarakos, E. (2019). Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. Journal of Cleaner Production, xxxx, 119440.
DOI 10.1016/j.jclepro.2019.119440

Shin, J., Park, J., & Park, N. (2017). A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells, 162(September 2016), 1–6.
DOI 10.1016/j.solmat.2016.12.038

Sica, D., Malandrino, O., Supino, S., Testa, M., & Lucchetti, M. C. (2018). Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews, 82, 2934–2945.
DOI 10.1016/J.RSER.2017.10.039

Song, B. P., Zhang, M. Y., Fan, Y., Jiang, L., Kang, J., Gou, T. T., Zhang, C. L., Yang, N., Zhang, G. J., & Zhou, X. (2020). Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation. Waste Management, 101, 180–187.
DOI 10.1016/j.wasman.2019.10.015

Tammaro, M., Salluzzo, A., Rimauro, J., Schiavo, S., & Manzo, S. (2016). Experimental investigation to evaluate the potential environmental hazards of photovoltaic panels. Journal of Hazardous Materials, 306, 395–405.
DOI 10.1016/J.JHAZMAT.2015.12.018

Tao, J., & Yu, S. (2015). Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells, 141, 108–124.
DOI 10.1016/j.solmat.2015.05.005

U.S. Geological Survey. (2015). Mineral Commodity Summaries 2015. US Geological Survey, 196.

Vogel, A. I. (1981). Quimica analitica qualitativa (5th ed.). Ed. Mestre Jou.

Weckend, S., Wade, A., & Heath, G. (2016). End of Life Management: Solar Photovoltaic Panels. Paris, France: International Energy Agency (IEA).
DOI 10.2172/1561525

Yang, E.-H., Lee, J.-K., Lee, J.-S., Ahn, Y.-S., Kang, G.-H., & Cho, C.-H. (2017). Environmentally friendly recovery of Ag from end-of-life c-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy, 167, 129–133.
DOI 10.1016/j.hydromet.2016.11.005

Yousef, S., Tatariants, M., Denafas, J., Makarevicius, V., Lukošiūtė, S.-I., & Kruopienė, J. (2019). Sustainable industrial technology for recovery of Al nanocrystals, Si micro-particles and Ag from solar cell wafer production waste. Solar Energy Materials and Solar Cells, 191, 493–501.
DOI 10.1016/J.SOLMAT.2018.12.008

Zhang, L., & Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19–36.
DOI 10.1016/j.jclepro.2016.04.004