an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Theresa Sattler - Department of Environmental and Energy Process Engineering, Chair of Waste Processing Technology and Waste Management, Montanuniversitat Leoben, Austria
  • Klaus Doschek-Held - Department of Environmental and Energy Process Engineering, Chair of Thermal Processing Technology, Montanuniversitat Leoben, Austria
  • Anna Krammer - Department of Environmental and Energy Process Engineering, Chair of Thermal Processing Technology, Montanuniversitat Leoben, Austria
  • Roland Pomberger - Department of Environmental and Energy Process Engineering, Chair of waste processing technology and waste management, Montanuniversitat Leoben, Austria
  • Daniel Vollprecht - Institute of Materials Resource Management, University of Augsburg, Germany

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2023 CISA Publisher


Mineral wool products are man-made vitreous fibres (MMVFs), such as glass wool and stone wool, mainly used for thermal and acoustic insulation. Demolition of buildings generates mineral wool (MW) waste. With regard to the intended recycling of materials, the European Union's circular economy package currently foresees a landfill ban for certain waste streams by 2030. As a result, Austria will have a landfill ban for MMVFs from 2027. This paper presents an investigated route for the recycling of MW waste into new mineral wool (wool2wool). The recycling route aims to conserve valuable and limited landfill volume and enables the reduction of primary resource consumption and CO2 emissions. The investigation was based on pH-dependent leaching tests of the fibres according to ÖNORM EN 14429 and hydrogeochemical modelling using LeachXS/Orchestra to identify the solubility-controlling mechanisms. The next step was a thermochemical treatment using correction materials to adjust the chemical composition, followed by rapid cooling through a spinning process. Another focus was on the theoretical determination of the dynamic viscosity to ensure suitable flow behaviour during fibre production. The chemical composition of the mineral wool produced was analysed, and it was shown that the target formulation could not be achieved for all elements within the permitted variation. The variations were due to the dissolution of the kiln lining, which had a more significant influence on the experiment than expected. Overall, the recycling pathway showed a high potential for CO2 savings, resource savings and other environmental benefits by recycling waste that is currently landfilled.


Editorial History

  • Received: 22 Sep 2023
  • Revised: 31 Jan 2024
  • Accepted: 09 Feb 2024
  • Available online: 20 Mar 2024


Barly, S.H.Q., Okhrimenko, D.V., Solvang, M., Yue, Y., Stipp, S.L.S. (2021). Dissolution of Stone Wool Fibres with Phenol-urea-formaldehyde Binder in a Synthetic Lung Fluid. Chemical Research in Toxicology 32, 2398-2410.
DOI 10.1021/acs.chemrestox.9b00179

Bauer, S. (2021). Zusammensetzung, Löslichkeit und löslichkeitsbestimmende Mechanismen von Mineralwollen. Master´s thesis. Montanuniversity Leoben

Costa, R., Orriols, R. (2012). Man-Made Mineral Fibers and the Respiratory Tract. Archivos de Bronconeumología (English Edition). Volume 48, Issue 12, December 2012, Pages 460-468.
DOI 10.1016/j.arbr.2012.04.004

DepVO (Deponieverordnung) (2021). Deponieverordnung 2008 – DVO 2008, Änderung der Deponieverordnung 2008, Verordnung der Bundesministerin für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK)

Doschek-Held K., Krammer A., Steindl F., Sattler T., Juhart J. (submitted). Recycling of mineral wool waste as supplementary cementitious material through thermochemical treatment. Waste Management & Research, submitted for publication

Eastes, W., Potter, R. M., Hadley, J. G. (2000). Estimation of dissolution rate from in-vivo studies of synthetic vitreous fibers. Inhal. Toxicol. 12, 1037–1054.
DOI 10.1080/08958370050164644

97/69/EC (1997). Commission Directive 97/69/EC of 5 December 1997 adapting to technical progress for the 23rd time Council Directive 67/548/EEC on the approximation of the laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances

EUCEB (European Certification Board for Mineral Wool Products) (2023)., assessed on 2023/08/22

GefStoffV (Gefahrstoffverordnung) (2010) Verordnung zum Schutz vor Gefahrstoffen, Bundesrepublik Deutschland, BGBl. I 2010, 1674 – 1676

Guldberg, M. Jensen, S., Knudsen, T., Steenberg, T. Kamstrup, O. (2001). High-Alumina Low-Silica HT Stone Wool Fibers: A Chemical Compositional Range with High Biosolubility. Regulatory Toxicology and Pharmacology 35, 217–226 (2002), June 2001.
DOI 10.1006/rtph.2001.1523

Guldberg, M.; de Meringo, Al; Kamstrup, Ol, Furtak, H, Rossiter, C. (2000) The Development of Glass and Stone Wool Compositions with Increased Biosolubility. Regulatory Toxicology and Pharmacology 32, 184-189.
DOI 10.1006/rtph.2000.1418

Huber, C. (2019). Dämmstoffe (Glas- und Steinwolle) auf der Deponiedeponiebautechnische Aspekte. Powerpoint Präsentation. Wien: Erfahrungsaustausch Deponien

Höllen, D.; Galler, R.; Pomberger, R., (2015). Möglichkeit des Schlackeeinsatzes als Untertageversatz. In: Mineralische Nebenprodukte und Abfälle. Aschen, Schlacken, Stäube und Baurestmassen, 2015, Bd. 2, S. 519 530

IARC (1988). IARC Man-made Mineral Fibres and Radon, IARC Monographs on the evaluation of the carcinogenic risks to humans, Volume 43

Muhle, H.; Bellmann, B.; Sebastian, K.; Barig, A.; Blome, H. (1998). Fasern - Tests zur Abschätzung der Biobeständigkeit und zum Verstaubungsverhalten, BIA-Report. HVBG, Sankt Augustin

Oberdörster, G. (1991). Deposition, elimination and effects of fibres in the respiratory tract of humans and animals. VDI-Berichte 853, 17-37

Peternelj, M., Bizjan, B., Širok, B. (2017). The Influence of Airflow Characteristics and Accumulation Grid Velocity on the Formation of a Stone Wool Primary Layer. Strojniški vestnik - Journal of Mechanical Engineering 63(2017)6, 405-414. 2017 Journal of Mechanical Engineering.
DOI 10.5545/sv-jme.2017.4503

RAL (2023)., accessed on 2023/08/22

Sattler, T., Vollprecht, D., Schimek, J., Pomberger, R. (2019). Recycling künstlicher Mineralfasern, Deutsche Gesellschaft für Abfallwirtschaft e.V. DGAW, 9. Wissenschaftskongress, Abfall- und Ressourcenwirtschaft, Amberg-Weiden, innsbruck university press 2019, pp.215-219

Sattler T, Pomberger R, Schimek J and Vollprecht D (2020a). Mineral Wool Waste in Austria, Associated Health Aspects and Recycling Options. Detritus(9): 174–180, 10.31025/2611-4135/2020.13904

Sattler T, Sartori M, Galler R et al. (2020b). Effects of cement addition and briquetting of rock wool on its geomechanical stability in landfills. Waste management & research the journal of the International Solid Wastes and Public Cleansing Association, ISWA 38(4): 408–414,
DOI 10.1177/0734242X20906876

Sattler, T. M., Höllen, D., & Pomberger, R. (2020c). Stoffliche Verwertung von Mineralwolleabfällen in der Zement- und Mineralwolleindustrie. in Mineralische Nebenprodukte und Abfälle 7: -Aschen, Schlacken, Stäube und Baurestmassen- (Band 7, S. 342-355)

Sattler, T. M., Vollprecht, D., Dietrich, V., Schimek, J. (2020d). Eignung ungefährlicher Mineralwolleabfälle als aufbereiteter hydraulisch wirksamer Zusatzstoff in der Zementindustrie. Recy&DepoTech. Band 15. S. 605-610

Steindl RF, Doschek-Held K, Weisser K et al. (2023). Mineral residues and by-products upcycled into reactive binder components for composite cements or alkali-activated materials. In SynerCrete ‘23 (Synercrete (ed.))

Tuorila, H., Luukkonen, T., Yliniemi, J., Ramaswamy, J., D’Hooghe, J., Kinnunen, P., Kaiser, A., Illikainen, M. (2020). Utilization of mineral wool from construction and demolition waste: sorting, pre-treatment, and alkali activation. [20.06.2023]

United Nations (2015). Transformation unserer Welt: die Agenda 2030 für nachhaltige Entwicklung. Vereinte Nationen, New York, A /RES/70/1

Urbain, G (1987). Viscosity estimation of slags. Steel research 58 (198) NO.3. March 1987.
DOI 10.1002/srin.198701513

Yliniemi, J., Kinnunen, P., Karinkanta, P., Illikainen, M. (2016). Utilization of Mineral Wools as Alkali-Activated Material Precursor. Materials 2016, 9, 312;
DOI 10.3390/ma9050312

Wohlleben, W., Waindok, H., Daumann, B., Werle, K., Drum, M., Egenolf, H. (2017). Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder. Particle and Fibre Toxicology (2017).
DOI 10.1186/s12989-017-0210-8

Yliniemi, J., Ramaswamy. R., Luukkonen, T., Laitinen, O., Nunes de Sousa, A., Huuhtanen, M. Illikainen, M. (2021). Characterization of mineral wool waste chemical composition, organic resin content and fiber dimensions: Aspects for valorization. Waste Management 131 (2021) 323–330. June 2021.
DOI 10.1016/j.wasman.2021.06.022