an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Hugo Ignacio Lucas - IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany
  • Cristina Garcia Lopez - Institut für Aufbereitung und Recycling, RWTH Aachen University, Germany
  • Juan Carlos Hernández Parrodi - New-Mine project, Renewi Belgium SA/NV, Belgium - Montanuniversitat Leoben, Austria
  • Daniel Vollprecht - Montanuniversität Leoben, Austria
  • Karoline Raulf - Department of Processing and Recycling, Rheinisch Westfalische Technische Hochschule Aachen, Germany
  • Roland Pomberger - Montanuniversität Leoben, Austria
  • Thomas Pretz - Department of Processing and Recycling, RWTH Aachen University, Germany
  • Bernd Friedrich - IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Germany

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


Nonferrous metals (NFM) contribute the most to the revenues that might be generated by the implementation of landfill mining (LFM). However, metals in landfills undergo stronger degradation compared to that of their normal use, which might lead to a lower scrap quality compared to conventional scrap. Nowadays, there is information about the most common metals found in LFM, but no reliable data about their quality. In general, excavated landfill material is processed mechanically through different steps, such as particle size separation and metal classification by magnetic and eddy current separation. The subject of this work is the characterisation of NFM recovered from a landfill in Belgium with the goal to assess the quality of metals for marketing purposes. In this study, two questions about the real concentration of metals and the marketability of NFM are discussed. A primary evaluation shows that there is around 5 kg of NFM per ton of excavated material processed at the Mont-Saint-Guibert landfill. Besides, through thermal treatment, it was possible to find out that on average only 70 wt% of the NFM is metallic being the rest, defilements (30 wt%) strongly attached. As a result, a technical assessment was carried out following two approaches. In the first approach, 7 types of scraps can be potentially recovered from NFM: two different qualities of Al scrap, two of Cu, one of Pb, one of Zn, and one of stainless steel. In the second approach, NFM might be commercialised directly from the landfill as a mixed nonferrous scrap.


Editorial History

  • Received: 01 Jul 2019
  • Revised: 09 Dec 2019
  • Accepted: 18 Dec 2019
  • Available online: 23 Dec 2019


Abdalla, A.N., Faraj, M.A., Samsuri, F., Rifai, D., Ali, K., Al-Douri, Y., 2019. Challenges in improving the performance of eddy current testing: Review. Meas. Control 52, 46–64.
DOI 10.1177/0020294018801382

Barker, K., 2014. Dense Medium Separation Ideal for Processing SR and Zorba [WWW Document]. Recycl. Prod. News. URL (accessed 6.25.19)

Belevi, H., Baccini, P., 1989. Long-term behavior of municipal solid waste landfills. Waste Manag. Res. 7, 43–56.
DOI 10.1016/0734-242X(89)90007-4

Bozkurt, S., 1998. Simulations of the long-term chemical evolution in waste deposits (Licentiate Thesis). Department of Chemical Engineering and Technology, Royal Institute of Technology, Sweden

Bozkurt, S., Moreno, L., Neretnieks, I., 1999. Long-term fate of organics in waste deposits and its effect on metal release. Sci. Total Environ. 228, 135–152.
DOI 10.1016/S0048-9697(99)00047-9

Capuzzi, S., Timelli, G., 2018. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 8, 249.
DOI 10.3390/met8040249

Cohen-Rosenthal, E., 2004. Making sense out of industrial ecology: a framework for analysis and action. Appl. Ind. Ecol. 12, 1111–1123.
DOI 10.1016/j.jclepro.2004.02.009

Dürkoop, A., Brandstetter, CP., Gräbe, G., Rentsch, L., 2016. Innovative Technologien für Ressourceneffizienz - Strategische Metalle und Mineralien (r3). Germany

García López, C., Pretz, T., Hernández Parrodi, J.C., Küppers, B., Ni, A., 2018. Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery. Detritus.
DOI 10.31025/2611-4135/2019.13780

Habashi, F. (Ed.), 1998. Handbook of Extractive Metallurgy. Wiley-VCH, Weinheim ; New York

Hernández Parrodi, J.C., Garcia Lopez, C., Küppers, B., Raulf, K., Vollprecht, D., Pretz, T., Pomberger, R., 2019. Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Characterization and potential of fine fractions. Detritus In Press

Hernández Parrodi, J.C., Höllen, D., Pomberger, R., 2018. Potential and main technological challenges for material and energy recovery from fine fraction of landfilll mining: A critical review. Detritus In Press, 1.
DOI 10.31025/2611-4135/2018.13689

Hernandez Parrodi, J.C., Raulf, K., Vollprecht, D., Pomberger, R., 2019. Mechanical processing of fine fractions from landfill mining for material and energy recovery. Presented at the 17th International waste management and landfill symposium, Sardinia, Italy, p. Submitted

IGRETEC, 1994. Etudie des incidences sur l´environnement. ISSeP, Belgium

ISSeP, 2011. Historique de l’exploitation depuis 1937 [History of operation since 1937] (No. Réf. ISSeP – C.E.T. – MSG-exp04 historique). C.E.T. de Mont-Saint-Guibert, MSG, Belgium

Kapur, A., Graedel, T.E., 2006. Copper mines above and below the ground. Estimating the stocks of materials in ore, products, and disposal sites opens up new ways to recycle and reuse valuable resources. Environ. Sci. Technol. 40, 3135–3141

Krook, J., Svensson, N., Eklund, M., 2012. Landfill mining: A critical review of two decades of research. Waste Manag. 32, 513–520.
DOI 10.1016/j.wasman.2011.10.015

Lifset, R.J., Gordon, R.B., Graedel, T.E., Spatari, S., Bertram, M., 2002. Where has all the copper gone: The stocks and flows project, part 1. JOM 54, 21–26.
DOI 10.1007/BF02709216

Lucas, H., Li, C., Hernandez Parrodi, J.C., Garcia Lopez, C., Gursel, D., Friedrich, B., Pretz, T., Wotruba, H., 2019. Primary evaluation of the use and refining of Al scrap recovered from a landfill in Belgium. Presented at the EMC, Dusseldorf, Germany, pp. 51–61

Martensson, A.M., Aulin, C., Wahlberg, O., Agren, S., 1999. Effect of humic substances on the mobility of toxic metals in a mature landfill. Waste Manag. Res. 17, 296–304.
DOI 10.1034/j.1399-3070.1999.00053.x

Morf, L.S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Lorenzo, F.D., Böni, D., 2013. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant. Waste Manag. 33, 634–644.
DOI 10.1016/j.wasman.2012.09.010

Muller, D.B., Wang, T., Duval, B., Graedel, T.E., 2006. Exploring the engine of anthropogenic iron cycles. Proc. Natl. Acad. Sci. 103, 16111–16116.
DOI 10.1073/pnas.0603375103

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., Spooren, J., 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. Spec. Vol. Urban Landfill Min. 55, 72–83.
DOI 10.1016/j.jclepro.2012.06.012

Samuel, M., 2003. A new technique for recycling aluminium scrap. J. Mater. Process. Technol. 135, 117–124.
DOI 10.1016/S0924-0136(02)01133-0

Schlesinger, M.E., 2013. Aluminum Recycling, 0 ed. CRC Press.
DOI 10.1201/b16192

Schlesinger, M.E., King, M.J., Sole, K.C., Davenport, W.G., 2011. Collection and Processing of Recycled Copper, in Extractive Metallurgy of Copper. Elsevier, pp. 373–387.
DOI 10.1016/B978-0-08-096789-9.10018-6

Schmitz, C. (Ed.), 2006. Part Mechanical Preparation: Process lines for mechanical preparation, in Handbook of Aluminium Recycling: Mechanical Preparation, Metallurgical Processing, Heat Treatment. Vulkan-Verlag GmbH, Essen, pp. 56–71

Schmitz, C., Domagala, J., Haag, P. (Eds.), 2006. Handbook of aluminium recycling. Vulkan, Essen

Scrap Specifications Circular, 2017. . ISRI, USA

Soo, V.K., Peeters, J.R., Compston, P., Doolan, M., Duflou, J.R., 2019. Economic and Environmental Evaluation of Aluminium Recycling based on a Belgian Case Study. Procedia Manuf. 33, 639–646.
DOI 10.1016/j.promfg.2019.04.080

Spencer, D.B., Schlömann, E., 1975. Recovery of non-ferrous metals by means of permanent magnets. Resour. Recovery Conserv. 1, 151–165.
DOI 10.1016/0304-3967(75)90022-0

Van Vossen, W.J., Prent, O.J., 2011. Feasibility study: Sustainable material and energy recovery from landfills in Europe., in Proceedings Sardinia 2011. Presented at the Thirteen International Waste Management and Landfill Symposium, Sardinia, Italy, pp. 247–248

Winterstetter, A., Laner, D., Rechberger, H., Fellner, J., 2015. Framework for the evaluation of anthropogenic resources: A landfill mining case study – Resource or reserve? Resour. Conserv. Recycl. 96, 19–30.
DOI 10.1016/j.resconrec.2015.01.004

Wolfsberger, T., Sarc, R., Pomberger, R., 2015. Quality and recovery of specific waste fractions from Landfill Mining for material and energy recovery. Presented at the International Landfill Mining Conference, Grece

XIAO, Y., REUTER, M.A., BOIN, U., 2005. Aluminium Recycling and Environmental Issues of Salt Slag Treatment. J. Environ. Sci. Health Part A 40, 1861–1875.
DOI 10.1080/10934520500183824