an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

MICROWAVE-BASED PYROMETALLURGICAL PROCESS TO PRODUCE FERROSILICON WITH PV CELLS FROM EOL PV PANELS

  • Emma Pitacco - Department of Industrial Engineering, University of Padova, Italy
  • Pietrogiovanni Cerchier - 9-Tech srl, Italy
  • Mirko Pigato - Department of Industrial Engineering, University of Padova, Italy
  • Caterina Bernardini - Department of Industrial Engineering, University of Padova, Italy
  • Lorenzo D'Ambrosi - Department of Industrial Engineering, University of Padova, Italy
  • Michele Forzan - Department of Industrial Engineering, University of Padova, Italy
  • Katya Brunelli - Department of Industrial Engineering, University of Padova, Italy

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2025 CISA Publisher


Abstract

In this work, PV silicon recovered from a PV panel recycling facility was utilized as a reactant for the synthesis of ferrosilicon alloys via microwave treatment in the presence of iron oxides and graphite. Microwave-driven process was further explored using ladle furnace slag from secondary steelmaking as a reactive component. Different amounts of reactants, time and microwave power were used. Microwave heating allowed to reach temperatures higher than 900 °C after few minutes of treatment at a power of 600 W. The obtained materials were characterized by SEM-EDS and XRD. The proposed process allowed to obtain a ferrosilicon alloy with an amount of 21% Si. This study explored the use of three different types of waste to obtain a ferroalloy FeSi that can be afterwards employed in the steelmaking process.

Keywords


Editorial History

  • Received: 12 Jun 2025
  • Revised: 25 Aug 2025
  • Accepted: 29 Sep 2025
  • Available online: 14 Oct 2025

References

Aaros, P., Aponte, D., Lavin, R., & Barra, M. (s.d.). Sustainable Portland Cement Alternative: Alkaline Activation of Ladle Furnace Slag as a Precursor for Eco-Friendly Building Materials. Journal of Materials in Civil Engineering, 37(5).
DOI 10.1061/JMCEE7.MTENG-18856

Adolfsson, D., Engström, F., Robinson, R., & Björkman, B. (2011). Cementitious Phases in Ladle Slag. Steel Research International, 82(4), 398–403.
DOI 10.1002/srin.201000176

Blaesing, L., Walnsch, A., Hippmann, S., Modrzynski, C., Weidlich, C., Pavón, S., & Bertau, M. (2024). Ferrosilicon Production from Silicon Wafer Breakage and Red Mud. ACS Sustainable Resource Management, 1(3), 404–416.
DOI 10.1021/acssusresmgt.3c00035

Cerchier, P., Brunelli, K., Pezzato, L., Audoin, C., Rakotoniaina, J. P., Sessa, T., Tammaro, M., Sabia, G., Attanasio, A., Forte, C., Nisi, A., Suitner, H., & Dabalà, M. (2021). Innovative recycling of end of life silicon PV panels: ReSiELP. Detritus, 41–47.
DOI 10.31025/2611-4135/2021.15118

Cerchier, P., Miserocchi, F., Pezzato, L., Nisato, F., Tassinato, G., Grigolato, C., Dabalà, M., & Brunelli, K. (2024). Photovoltaic panel recycling: Tests in the pilot plant in Venice and silicon applications for ferroalloy production. Detritus, 29, 54–62.
DOI 10.31025/2611-4135/2024.19436

Disconzi, F., & Bellotto, M. (2025). Production of Synthetic Hydraulic Binder Precursors from Steel Slags: Experimental Validation and Thermodynamic Simulation. Proceedings of the RILEM Spring Convention and Conference 2024, 208–215.
DOI 10.1007/978-3-031-70277-8_24

Dubey, S., Jadhav, N. Y., & Zakirova, B. (2013). Socio-Economic and Environmental Impacts of Silicon Based Photovoltaic (PV) Technologies. Energy Procedia, 33, 322–334.
DOI 10.1016/j.egypro.2013.05.073

Farzana, R., Rajarao, R., & Sahajwalla, V. (2014). Synthesis of ferrosilicon alloy using waste glass and plastic. Materials Letters, 116, 101–103.
DOI 10.1016/j.matlet.2013.10.105

Guo, J., Liu, X., Yu, J., Xu, C., Wu, Y., Pan, D., & Senthil, R. A. (2021). An overview of the comprehensive utilization of silicon-based solid waste related to PV industry. Resources, Conservation and Recycling, 169, 105450.
DOI 10.1016/j.resconrec.2021.105450

Huang, W.-H., Shin, W. J., Wang, L., Sun, W.-C., & Tao, M. (2017). Strategy and technology to recycle wafer-silicon solar modules. Solar Energy, 144, 22–31.
DOI 10.1016/j.solener.2017.01.001

Ishizaki, K., & Nagata, K. (2007). Selectivity of Microwave Energy Consumption in the Reduction of Fe3O4 with Carbon Black in Mixed Powder. Isij International - ISIJ INT, 47, 811–816.
DOI 10.2355/isijinternational.47.811

Najm, O., El-Hassan, H., & El-Dieb, A. (2021). Ladle slag characteristics and use in mortar and concrete: A comprehensive review. Journal of Cleaner Production, 288, 125584.
DOI 10.1016/j.jclepro.2020.125584

Ngagoum Ndalloka, Z., Vijayakumar Nair, H., Alpert, S., & Schmid, C. (2024). Solar photovoltaic recycling strategies. Solar Energy, 270, 112379.
DOI 10.1016/j.solener.2024.112379

Pagnanelli, F., Moscardini, E., Granata, G., Abo Atia, T., Altimari, P., Havlik, T., & Toro, L. (2017). Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management, 59, 422–431.
DOI 10.1016/j.wasman.2016.11.011

Peng, Z., & Hwang, J.-Y. (2015). Microwave-assisted metallurgy. International Materials Reviews, 60(1).
DOI 10.1179/1743280414Y.0000000042

Preet, S., & Smith, S. T. (2024). A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. Journal of Cleaner Production, 448, 141661.
DOI 10.1016/j.jclepro.2024.141661

Rauf Hurman, E. (2014). Production of Ferroalloys. In S. Seetharaman (A c. Di), Treatise on Process Metallurgy (pp. 477–532). Elsevier.
DOI 10.1016/B978-0-08-096988-6.00005-5

Rayapudi, V., Agrawal, S., & Dhawan, N. (2020). Evaluation of carbothermal reduction for processing of banded hematite jasper ore. Powder Technology, 362, 826–834.
DOI 10.1016/j.powtec.2019.09.094

Singh, S., Bhaskar, R., Narayanan, K. B., Kumar, A., & Debnath, K. (2024). Development of silicon carbide (SiC)-based composites as microwave-absorbing materials (MAMs): A review. Journal of the European Ceramic Society, 44(13), 7411–7431.
DOI 10.1016/j.jeurceramsoc.2024.05.032

Yong, C. L., Tan, T. H., Ghayeb, H. H., Koting, S., & Mo, K. H. (2025). Role of sulphate-based additives on the early age properties of Portland cement incorporating alumina-rich ladle furnace slag. Case Studies in Construction Materials, 22, e04336.
DOI 10.1016/j.cscm.2025.e04336

Zhang, C., Ma, Q., Cai, M., Zhao, Z., Xie, H., Ning, Z., Wang, D., & Yin, H. (2021). Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes. Waste Management, 135, 182–189.
DOI 10.1016/j.wasman.2021.08.037

Zhang, N., Deng, G., Liao, W., Hu, C., & Ma, H. (2025). Positive effects of sulfates on performance of cement paste incorporating low-grade, high-aluminum steel slag. Cement and Concrete Composites, 162, 106134.
DOI 10.1016/j.cemconcomp.2025.106134

Zhu, J., Yang, Z., Li, X., Qi, S., & Jia, M. (2018). Application of microwave heating with iron oxide nanoparticles in the in-situ exploitation of oil shale. Energy Science & Engineering, 6(5), 548–562.
DOI 10.1002/ese3.231