an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

TEMPORARY MATERIAL HUBS TO ENHANCE CIRCULAR ECONOMY: A CONCEPTUAL FRAMEWORK

  • Romana Kopecká - Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Austria
  • Marlies Hrad - Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Austria
  • Marion Huber-Humer - Department of Landscape, Water and Infrastructure, Institute of Waste Management and Circularity, BOKU University, Austria

Released under CC BY-NC-ND

Copyright: © 2025 CISA Publisher


Abstract

This study introduces the integrative concept of Temporary Material Hubs (TMHs) as a newly adapted approach to enhance long-term improvement in circularity by storing prospectively valuable waste, under current conditions not feasible or possible to recover, for future recycling capabilities. TMHs aim to optimize resource recovery by prolonging the lifespan of materials in anthropogenic cycles and avoiding premature disposal. Unlike landfilling with subsequent landfill mining (disposal and later excavation), TMHs proactively store such materials in controlled “hubs” to preserve value and enable future high-quality recovery. The conceptual framework is complemented by the known final sink concept to maintain clean material cycles. Given the lack of a clear definition of recyclability, this paper further proposes recycling pillars as guiding principles in the context of TMHs: environmental and health protection, availability of adequate recycling technologies, and economic feasibility including the availability of markets. Exemplary candidate materials for TMHs currently envisage, e.g., end-of-life wind blades and incineration residues. A SWOT analysis was used to discuss the strengths of TMHs in promoting resource optimization through postponed recycling, while identifying weaknesses such as uncertain costs and current lack of accurate technical implementation concepts. Opportunities lie in supporting European circularity goals and reducing primary material extraction, whereas threats include future regulatory uncertainties and inaccurate estimations of future waste recyclability. This study prepares the ground for future research and risk-assessment on technical, economical, and societal factors necessary for implementing TMHs on an industrial scale to ensure better functioning of the circular economy and a sustainable future.

Keywords


Editorial History

  • Received: 15 Sep 2025
  • Revised: 19 Nov 2025
  • Accepted: 18 Dec 2025
  • Available online: 08 Feb 2026

References

Ait-Touchente, Z., Khellaf, M., Raffin, G., Lebaz, N., & Elaissari, A. (2024). Recent advances in polyvinyl chloride (PVC) recycling. Polymers for Advanced Technologies, 35(1), e6228.
DOI 10.1002/pat.6228

Allen, M. (2024). Recycling tyres and plastics with an ancient heating method | Horizon Magazine. https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/recycling-tyres-and-plastics-ancient-heating-method

Alves Dias, P., Pavel, C., Plazzotta, B., & Carrara, S. (2020). Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system. Publications Office of the European Union.
DOI 10.2760/160859

Andini, E., Bhalode, P., Gantert, E., Sadula, S., & Vlachos, D. G. (2024). Chemical recycling of mixed textile waste. Science Advances, 10(27), eado6827.
DOI 10.1126/sciadv.ado6827

Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984.
DOI 10.1098/rstb.2008.0304

Bagheri, M., Gómez-Sanabria, A., & Höglund-Isaksson, L. (2024). Economic feasibility and direct greenhouse gas emissions from different phosphorus recovery methods in Swedish wastewater treatment plants. Sustainable Production and Consumption, 49, 462–473.
DOI 10.1016/j.spc.2024.07.007

BMK. (2024). Novelle der Deponieverordnung CFK und GFK Abfälle. https://www.wko.at/oe/news/0119-tf-wfa-novelle-deponievo.pdf

Brunner, P. H. (2011). Urban Mining A Contribution to Reindustrializing the City. Journal of Industrial Ecology, 15(3), 339–341.
DOI 10.1111/j.1530-9290.2011.00345.x

Bund/Länder-Arbeitsgemeinschaft Abfall (LAGA). (2019). Entsorgung faserhaltiger Abfälle—Abschlussbericht. https://proenvi.de/recht/LAGA/Bericht-Laga-Entsorgung-faserhaltige-abfaelle_201907.pdf

Bundesministerium der Justiz. (2009). § 1 DepV - Einzelnorm. Bundesministerium der Justiz. https://www.gesetze-im-internet.de/depv_2009/DepV.pdf

Business in Wind. (2025). Business in Wind—Sharing commitment. Business in Wind. https://businessinwind.com/

Cabinet of Ministers of Ukraine. (2022). On Approval of the Procedure for Waste Management Generated in Connection with Damage (Destruction) of Buildings and Structures as a Result of Hostilities, Terrorist Acts, Sabotage or Works to Eliminate Their Consequences and Amendments to Certain Resolutions of the Cabinet of Ministers of Ukraine

Cao, C., Yuan, Z., Liu, H., Fei, X., Esteban, J., & She, Q. (2024). Insights into the usage of biobased organic acids for treating municipal solid waste incineration bottom ash towards metal removal and material recycling. Separation and Purification Technology, 353, 128330.
DOI 10.1016/j.seppur.2024.128330

Chen, B., Perumal, P., Illikainen, M., & Ye, G. (2023). A review on the utilization of municipal solid waste incineration (MSWI) bottom ash as a mineral resource for construction materials. Journal of Building Engineering, 71, 106386.
DOI 10.1016/j.jobe.2023.106386

Chimenos, J. M., Fernández, A. I., Miralles, L., Segarra, M., & Espiell, F. (2003). Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23(10), 887–895.
DOI 10.1016/S0956-053X(03)00074-6

Composites UK. (2016). Composites Recycling – Where are we now? End of Life and Recycling | Composites UK. https://compositesuk.co.uk/industry-support/environmental/end-of-life-and-recycling/

Cossu. (2016). Back to Earth Sites: From “nasty and unsightly” landfilling to final sink and geological repository. Waste Management, 55, 1–2.
DOI 10.1016/j.wasman.2016.07.028

Dobrotă, D., Dobrotă, G., & Dobrescu, T. (2020). Improvement of waste tyre recycling technology based on a new tyre markings. Journal of Cleaner Production, 260, 121141.
DOI 10.1016/j.jclepro.2020.121141

EasyMining. (2025). The world’s first Ash2Phos plant. https://www.easymining.com/projects/plant-projects/Ash2Phos-plant-schkopau/

Eicher, N. (2025). Klärschlammbehandlung. Kanton Zürich. https://www.zh.ch/de/umwelt-tiere/abfall-rohstoffe/abfaelle/abfallanlagen/klaerschlammbehandlung.html

Ellringmann, T., Wilms, C., Warnecke, M., Seide, G., & Gries, T. (2016). Carbon fiber production costing: A modular approach. Textile Research Journal, 86(2), 178–190.
DOI 10.1177/0040517514532161

Esguerra, J. L., Carlsson, A., Johansson, J., & Anderberg, S. (2024). Characterization, recyclability, and significance of plastic packaging in mixed municipal solid waste for achieving recycling targets in a Swedish city. Journal of Cleaner Production, 468, 143014.
DOI 10.1016/j.jclepro.2024.143014

EuCIA. (2023). EuCIA launches European Composites Waste & Recycling Survey—JEC. Https://Www.Jeccomposites.Com/. https://www.jeccomposites.com/news/spotted-by-jec/eucia-launches-european-composites-waste-recycling-survey/

European Aluminium. (2017). Activity Report 2016. https://european-aluminium.eu/wp-content/uploads/2022/10/activity-report-2016_web.pdf

European Aluminium. (2020). Circular Aluminium Action Plan—Executive summary. https://european-aluminium.eu/wp-content/uploads/2022/08/european-aluminium-circular-aluminium-action-plan.pdf

European Chemicals Agency. (2024). All news—ECHA. https://echa.europa.eu/news-and-events/news-alerts/all-news/-/asset_publisher/yhAseXkvBI2u/

European Commission. (2014). 2014/955/EU: Commission Decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council Text with EEA relevance. http://data.europa.eu/eli/dec/2014/955/oj/eng

European Commission. (2020a). A new Circular Economy Action Plan. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN

European Commission. (2020b). Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions A new Circular Economy Action Plan For a cleaner and more competitive Europe. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN

European Commission. (2020c). Strategic Plan 2020-2024. https://commission.europa.eu/system/files/2020-10/env_sp_2020_2024_en.pdf

European Commission. (2022). Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on packaging and packaging waste, amending Regulation (EU) 2019/1020 and Directive (EU) 2019/904, and repealing Directive 94/62/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0677

European Commission. (2023a). Circular economy for textiles [Text]. European Commission - European Commission. https://ec.europa.eu/commission/presscorner/detail/en/ip_23_3635

European Commission. (2023b). LIFE project aims to revolutionise Europe’s approach to recycling end-of-life tyres. - European Commission. https://cinea.ec.europa.eu/news-events/news/life-project-aims-revolutionise-europes-approach-recycling-end-life-tyres-2023-12-14_en

European Commission. (2023c). More circular, less carbon: Chemical recycling holds promise for wind-turbine blade waste. https://environment.ec.europa.eu/news/more-circular-less-carbon-chemical-recycling-holds-promise-wind-turbine-blade-waste-2023-10-19_en

European Commission. (2024). Plastic Recycling—European Commission. https://food.ec.europa.eu/food-safety/chemical-safety/food-contact-materials/plastic-recycling_en

European Commission & Ramboll. (2022). The use of PVC (poly vinyl chloride) in the context of a non-toxic environment: Final report. Publications Office of the European Union.
DOI 10.2779/375357

European Council. (2024). European Green Deal. European Council. https://www.consilium.europa.eu/en/policies/green-deal/

European Environment Agency. (2017). Circular by design—Products in the circular economy—European Environment Agency (Publication 6/2017). https://www.eea.europa.eu/publications/circular-by-design

European Environment Agency. (2022). Investigating Europe′s secondary raw material markets—European Environment Agency [Publication]. https://www.eea.europa.eu/publications/investigating-europes-secondary-raw-material

European Environment Agency. (2023). Markets for many commonly recycled materials struggle in the EU. European Environment Agency. https://www.eea.europa.eu/en/newsroom/news/markets-commonly-recycled-materials-struggle

European Environment Agency. (2024). Europe’s sustainability transitions outlook (TH-AL-24-011-EN-N; p. 70). European Environment Agency. https://www.eea.europa.eu/publications/europes-sustainability-transitions-outlook

European Environment Agency. (2025). Circular material use rate in Europe. European Environment Agency. https://www.eea.europa.eu/en/analysis/indicators/circular-material-use-rate-in-europe

European Environmental Bureau. (2017). Keeping it clean: How to protect the circular economy from hazardous substances - EEB - The European Environmental Bureau. https://eeb.org/library/keeping-it-clean-how-to-protect-the-circular-economy-from-hazardous-substances/

European Parliament. (2021). European Parliament resolution of 15 January 2020 on the European Green Deal (2019/2956(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020IP0005

European Parliament. (2023). Circular economy: Definition, importance and benefits. https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits

European Parliament. (2024a). Deal on new rules for more sustainable packaging in the EU. News - European Parliament. https://www.europarl.europa.eu/news/en/press-room/20240301IPR18595/deal-on-new-rules-for-more-sustainable-packaging-in-the-eu

European Parliament. (2024b). Plastic waste and recycling in the EU: Facts and figures. Topics | European Parliament. https://www.europarl.europa.eu/topics/en/article/20181212STO21610/plastic-waste-and-recycling-in-the-eu-facts-and-figures

European Parliament and the Council. (2019). Directive—2019/904—EN - SUP Directive—EUR-Lex. https://eur-lex.europa.eu/eli/dir/2019/904/oj

European Parliament and the Council. (2024a). Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. http://data.europa.eu/eli/dir/1999/31/2024-08-04/eng

European Parliament and the Council. (2024b). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance) Text with EEA relevance. http://data.europa.eu/eli/dir/2008/98/2024-02-18/eng

European Parliament and the Council. (2024c). Regulation (EU) 2024/1781 of the European Parliament and of the Council of 13 June 2024 establishing a framework for the setting of ecodesign requirements for sustainable products, amending Directive (EU) 2020/1828 and Regulation (EU) 2023/1542 and repealing Directive 2009/125/EC (Text with EEA relevance). http://data.europa.eu/eli/reg/2024/1781/oj/eng

Eurostat. (2024). Municipal waste statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Municipal_waste_statistics

Fellner, J., Lederer, J., Purgar, A., Winterstetter, A., Rechberger, H., Winter, F., & Laner, D. (2015). Evaluation of resource recovery from waste incineration residues – The case of zinc. Waste Management, 37, 95–103.
DOI 10.1016/j.wasman.2014.10.010

Fraser, M., Conde, Á., & Laxmi, H. (2024). The Circularity Gap Report. https://www.circularity-gap.world/2024#download

Garcia-Gutierrez, P., Amadei, A. M., Klenert, D., Nessi, S., Tonini, D., Tosches, D., Ardente, F., & Saveyn, H. (2023). Environmental and economic assessment of plastic waste recycling. JRC Publications Repository.
DOI 10.2760/0472

Gast, L., Meng, F., & Morgan, D. (2024). Assessing the circularity of onshore wind turbines: Using material flow analysis for improving end-of-life resource management. Resources, Conservation and Recycling, 204, 107468.
DOI 10.1016/j.resconrec.2024.107468

Geist, H., & Balle, F. (2025). Recyclability: Redefining the concept for the circular economy. Journal of Industrial Ecology, 29(5), 1505–1522.
DOI 10.1111/jiec.70082

Ghisellini, P., Ncube, A., Casazza, M., & Passaro, R. (2022). Toward circular and socially just urban mining in global societies and cities: Present state and future perspectives. Frontiers in Sustainable Cities, 4.
DOI 10.3389/frsc.2022.930061

Gori, M., Bergfeldt, B., Reichelt, J., & Sirini, P. (2013). Effect of natural ageing on volume stability of MSW and wood waste incineration residues. Waste Management, 33(4), 850–857.
DOI 10.1016/j.wasman.2012.12.005

Guo, Z., Qiu, J., Kirichek, A., Zhou, H., Liu, C., & Yang, L. (2024). Recycling waste tyre polymer for production of fibre reinforced cemented tailings backfill in green mining. Science of The Total Environment, 908, 168320.
DOI 10.1016/j.scitotenv.2023.168320

Herhof Umwelttechnik GmbH. (1992). Verfahren zur Zwischenlagerung von Kunststoffabfällen (European Union Patent EP0500007A2). https://patents.google.com/patent/EP0500007A2/de

Hestin, M., Faninger, T., & Milios, L. (2015). Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment. Plastic Recyclers Europe. http://www.plasticsrecyclers.eu/wp-content/uploads/2022/10/increased-eu-plastics-recycling-targets.pdf

Hopewell, J., Dvorak, R., & Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126.
DOI 10.1098/rstb.2008.0311

Inghels, D., & Bahlmann, M. D. (2021). Hibernation of mobile phones in the Netherlands: The role of brands, perceived value, and incentive structures. Resources, Conservation and Recycling, 164, 105178.
DOI 10.1016/j.resconrec.2020.105178

Isa, A., Nosbi, N., Che Ismail, M., Md Akil, H., Wan Ali, W. F. F., & Omar, M. F. (2022). A Review on Recycling of Carbon Fibres: Methods to Reinforce and Expected Fibre Composite Degradations. Materials, 15(14), 4991.
DOI 10.3390/ma15144991

Islam, Md. M., Haque, N., Lau, D., Bhuiyan, M., & Pramanik, B. K. (2025). Comparative life cycle assessment of end−of−life strategies for post−consumer polylactic acid waste: Environmental trade−offs and uncertainty analysis. Chemical Engineering Journal, 522, 167057.
DOI 10.1016/j.cej.2025.167057

Jensen, D., Clover, J., Lonergan, S., Levy, M., Bowling, B., Bromwich, B., Halle, S., Barefoot, N., Hamro-Drotz, D., Mourad, B., & Sexton, R. (2012). Renewable Resources and Conflict. UN Interagency Framework Team for Preventive Action. https://www.un.org/en/land-natural-resources-conflict/renewable-resources.shtml

Johansson, N., Krook, J., Eklund, M., & Berglund, B. (2013). An integrated review of concepts and initiatives for mining the technosphere: Towards a new taxonomy. Journal of Cleaner Production, 55, 35–44.
DOI 10.1016/j.jclepro.2012.04.007

Johansson, N., Velis, C., & Corvellec, H. (2020). Towards clean material cycles: Is there a policy conflict between circular economy and non-toxic environment? Waste Management & Research: The Journal for a Sustainable Circular Economy, 38(7), 705–707.
DOI 10.1177/0734242X20934251

Jones, P. T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., & Hoekstra, N. (2013). Enhanced Landfill Mining in view of multiple resource recovery: A critical review. Journal of Cleaner Production, 55, 45–55.
DOI 10.1016/j.jclepro.2012.05.021

Kahhat, R. F., & Kavazanjian, E. (2010). Preliminary feasibility study on the use of mono-disposal landfills for e-waste as temporary storage for future mining: 2010 IEEE International Symposium on Sustainable Systems and Technology, ISSST 2010. Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology, ISSST 2010.
DOI 10.1109/ISSST.2010.5507740

Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank.
DOI 10.1596/978-1-4648-1329-0

Kral, U., Kellner, K., & Brunner, P. H. (2013). Sustainable resource use requires “clean cycles” and safe “final sinks.” Science of The Total Environment, 461–462, 819–822.
DOI 10.1016/j.scitotenv.2012.08.094

Kral, U., Morf, L. S., Vyzinkarova, D., & Brunner, P. H. (2019). Cycles and sinks: Two key elements of a circular economy. Journal of Material Cycles and Waste Management, 21(1), 1–9.
DOI 10.1007/s10163-018-0786-6

Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: A critical review of two decades of research. Waste Management, 32(3), 513–520.
DOI 10.1016/j.wasman.2011.10.015

Kusenberg, M., Eschenbacher, A., Djokic, M. R., Zayoud, A., Ragaert, K., De Meester, S., & Van Geem, K. M. (2022). Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Waste Management, 138, 83–115.
DOI 10.1016/j.wasman.2021.11.009

Lahl, U., & Zeschmar-Lahl, B. (2024). More than 30 Years of PVC Recycling in Europe—A Critical Inventory. Sustainability, 16(9), Article 9.
DOI 10.3390/su16093854

Lamers, F. (2015). Treatment of Bottom Ashes of Waste-to-Energy Installations – State of the Art. TK Verlag - Fachverlag Für Kreislaufwirtschaft. https://ask-eu.de/Artikel/27666/Treatment-of-Bottom-Ashes-of-Waste-to-Energy-Installations-State-of-the-Art-.htm

Larrain, M., Van Passel, S., Thomassen, G., Van Gorp, B., Nhu, T. T., Huysveld, S., Van Geem, K. M., De Meester, S., & Billen, P. (2021). Techno-economic assessment of mechanical recycling of challenging post-consumer plastic packaging waste. Resources, Conservation and Recycling, 170, 105607.
DOI 10.1016/j.resconrec.2021.105607

Lehmphul, K. (2024). Landfill. Umweltbundesamt; Umweltbundesamt. https://www.umweltbundesamt.de/en/topics/waste-resources/waste-disposal/landfill

Lichtenegger, G., Rentizelas, A. A., Trivyza, N., & Siegl, S. (2020). Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Management, 106, 120–131.
DOI 10.1016/j.wasman.2020.03.018

Lim, J., Ahn, Y., & Kim, J. (2023). Optimal sorting and recycling of plastic waste as a renewable energy resource considering economic feasibility and environmental pollution. Process Safety and Environmental Protection, 169, 685–696.
DOI 10.1016/j.psep.2022.11.027

Limburg, M., & Quicker, P. (2016). Entsorgung von Carbonfasern – Probleme des Recyclings und Auswirkungen auf die Abfallverbrennung – [Print, online]. Berliner Abfallwirtschafts- und Energiekonferenz 2016, Nietwerder. TK-Verlag

Liu, Y., Mendoza-Perilla, P., Clavier, K. A., Tolaymat, T. M., Bowden, J. A., Solo-Gabriele, H. M., & Townsend, T. G. (2022). Municipal solid waste incineration (MSWI) ash co-disposal: Influence on per- and polyfluoroalkyl substances (PFAS) concentration in landfill leachate. Waste Management, 144, 49–56.
DOI 10.1016/j.wasman.2022.03.009

Lontoc, G. D., Diola, Ma. B. L. D., & Peralta, M. H. T. (2023). Multi-criteria evaluation of suitable locations for temporary disaster waste storage sites: The case of Cavite, Philippines. Journal of Material Cycles and Waste Management, 25(5), 2794–2808.
DOI 10.1007/s10163-023-01705-9

Margallo, M., Taddei, M. B. M., Hernández-Pellón, A., Aldaco, R., & Irabien, Á. (2015). Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technologies and Environmental Policy, 17(5), 1333–1353.
DOI 10.1007/s10098-015-0961-6

Miliute-Plepiene, J., Fråne, A., & Almasi, A. M. (2021). Overview of polyvinyl chloride (PVC) waste management practices in the Nordic countries. Cleaner Engineering and Technology, 4, 100246.
DOI 10.1016/j.clet.2021.100246

Mofokeng, N. N., Madikizela, L. M., Tiggelman, I., & Chimuka, L. (2024). Chemical profiling of paper recycling grades using GC-MS and LC-MS: An exploration of contaminants and their possible sources. Waste Management, 189, 148–158.
DOI 10.1016/j.wasman.2024.08.014

Montag, D., Everding, W., Malms, S., Pinnekamp, J., Reinhardt, J., Fehrenbach, H., Arnold, U., Trimborn, M., Goldbach, H., Klett, W., & Lammers, T. (2015). Bewertung konkreter Maßnahmen einer weitergehenden Phosphorrückgewinnung aus relevanten Stoffströmen sowie zum effizienten Phosphoreinsatz. Umweltbundesamt. https://www.umweltbundesamt.de/publikationen/bewertung-konkreter-massnahmen-einer-weitergehenden

Mostbauer, P., Lenz, S., & Lechner, P. (2008). MSWI Bottom Ash for Upgrading of Biogas and Landfill Gas. Environmental Technology, 29(7), 757–764.
DOI 10.1080/09593330801987061

Muntenita, C., Titire, L., Chivu, M., Podaru, G., & Marin, R. (2024). Wind Turbine Blade Material Behavior in Abrasive Wear Conditions. Polymers, 16(24), 3483.
DOI 10.3390/polym16243483

Nagle, A. J., Mullally, G., Leahy, P. G., & Dunphy, N. P. (2022). Life cycle assessment of the use of decommissioned wind blades in second life applications. Journal of Environmental Management, 302, 113994.
DOI 10.1016/j.jenvman.2021.113994

National Grid. (2023). Can wind turbine blades be recycled? | What happens to old wind turbine blades?

Nunna, S., Blanchard, P., Buckmaster, D., Davis, S., & Naebe, M. (2019). Development of a cost model for the production of carbon fibres. Heliyon, 5, e02698.
DOI 10.1016/j.heliyon.2019.e02698

Obernberger, I., & Supancic, K. (2024). FACT-SHEET: Zwischenlagerung von Pflanzenaschen. https://www.forstholzpapier.at/images/FHP-Arbeitskreise_/AK_Energie/FACTSHEET_Forststra%C3%9Fenbau.pdf

Oehmig, W. N., Roessler, J. G., Blaisi, N. I., & Townsend, T. G. (2015). Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environmental Science & Policy, 51, 304–312.
DOI 10.1016/j.envsci.2015.04.024

Parrodi, J. C. H., Vollprecht, D., & Pomberger, R. (2020). Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Physico-chemical characterization and valorization potential of combustibles and inert fractions recovered from fine fractions. Detritus, 10, 44.
DOI 10.31025/2611-4135/2020.13941

Pivnenko, K. (2016). Waste material recycling: Assessment of contaminants limiting recycling.
DOI 10.13140/RG.2.1.2202.0722

Plastics Europe. (2021). History of plastics. Plastics Europe. https://plasticseurope.org/plastics-explained/history-of-plastics/

Pomberger, R., & Bezama, A. (2024). About theoretical, technical and real recyclability. Waste Management & Research, 42(9), 713–714.
DOI 10.1177/0734242X241267184

Pomberger, R., & Ragossnig, A. (2014). Future waste – waste future. Waste Management & Research, 32(2), 89–90.
DOI 10.1177/0734242X14521344

RecyClass. (2024). RecyClass Recyclability Methodology. https://recyclass.eu/wp-content/uploads/2024/03/RECYCLASS-RECYCLABILITY-METHODOLOGY_v.2.3.pdf

Reig, M., Vecino, X., Valderrama, C., Sirés, I., & Luis Cortina, J. (2023). Waste-to-energy bottom ash management: Copper recovery by electrowinning. Separation and Purification Technology, 311, 123256.
DOI 10.1016/j.seppur.2023.123256

Roessler, J. G., Townsend, T. G., & Kanneganti, A. (2017). Waste to energy ash monofill mining: An environmental characterization of recovered material. Journal of Hazardous Materials, 328, 63–69.
DOI 10.1016/j.jhazmat.2017.01.011

Roetman, E., Joustra, J., Heideman, G., & Balkenende, R. (2024). Does the Rubber Meet the Road? Assessing the Potential of Devulcanization Technologies for the Innovation of Tire Rubber Recycling. Sustainability, 16(7), Article 7.
DOI 10.3390/su16072900

Romaszewski, T., & Fitas, J. (2024). Properties of RDF after Prolonged Storage. Sustainability, 16(5), Article 5.
DOI 10.3390/su16052051

Rybicka, J., Tiwari, A., & Leeke, G. A. (2016). Technology readiness level assessment of composites recycling technologies. Journal of Cleaner Production, 112, 1001–1012.
DOI 10.1016/j.jclepro.2015.08.104

Salas, A., Berrio, M. E., Martel, S., Díaz-Gómez, A., Palacio, D. A., Tuninetti, V., Medina, C., & Meléndrez, M. F. (2023). Towards recycling of waste carbon fiber: Strength, morphology and structural features of recovered carbon fibers. Waste Management, 165, 59–69.
DOI 10.1016/j.wasman.2023.04.017

Sapsford, D. J., Stewart, D. I., Sinnett, D. E., Burke, I. T., Cleall, P. J., Harbottle, M. J., Mayes, W., Owen, N. E., Sardo, A. M., & Weightman, A. (2023). Circular economy landfills for temporary storage and treatment of mineral-rich wastes. Proceedings of the Institution of Civil Engineers - Waste and Resource Management.
DOI 10.1680/jwarm.22.00008

Schinnerl, F., Sattler, T., Noori-Khadjavi, G., & Lehner, M. (2024). Direct aqueous mineral carbonation of secondary materials for carbon dioxide storage. Journal of CO2 Utilization, 88, 102942.
DOI 10.1016/j.jcou.2024.102942

Schmidt, B. (2024, 11). Klimastrategie 2040. VOEB - Future Waste, Wien

Sommer, V., Stockschläder, J., & Walther, G. (2020). Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union. Waste Management, 115, 83–94.
DOI 10.1016/j.wasman.2020.06.043

Spini, F., & Bettini, P. (2024). End-of-Life wind turbine blades: Review on recycling strategies. Composites Part B: Engineering, 275, 111290.
DOI 10.1016/j.compositesb.2024.111290

Stanisavljevic, N., & Brunner, P. H. (2021). Megacities need both: Circular economy and final sinks! Waste Management & Research, 39(12), 1437–1439

Stief, K. (1989). Strategy in landfilling solid wastes. In P. Baccini (Ed.), The Landfill (pp. 275–291). Springer.
DOI 10.1007/BFb0011268

Stipanovic, H., Bäck, T., & Tischberger-Aldrian, A. (2023). Characterisation of post-consumer textiles using near-infrared spectrometers: NIR 2023

The Environmental Research & Education Foundation. (2025). Extended Producer Responsibility Literature Review. www.erefdn.org

Torraco, R. J. (2016). Writing Integrative Literature Reviews: Using the Past and Present to Explore the Future. Human Resource Development Review, 15(4), 404–428.
DOI 10.1177/1534484316671606

Tortorici, D., Adriani, A., & Laurenzi, S. (2025). Development of a sustainable chemical recycling process of carbon fibers from epoxy-based composites. Composites Science and Technology, 270, 111295.
DOI 10.1016/j.compscitech.2025.111295

Umweltbundesamt. (2024). Ewigkeitschemikalien PFAS in Abfällen. Umweltbundesamt; Umweltbundesamt. https://www.umweltbundesamt.de/themen/ewigkeitschemikalien-pfas-in-abfaellen

van Nielen, S. S., Kleijn, R., Sprecher, B., Miranda Xicotencatl, B., & Tukker, A. (2022). Early-stage assessment of minor metal recyclability. Resources, Conservation and Recycling, 176, 105881.
DOI 10.1016/j.resconrec.2021.105881

Vermeulen, W., Reike, D., & Witjes, S. (2019). Circular Economy 3.0—Solving confusion around new conceptions of circularity by synthesising and re-organising the 3R’s concept into a 10R hierarchy. 2019. https://www.researchgate.net/publication/335602859_Circular_Economy_30_-_Solving_confusion_around_new_conceptions_of_circularity_by_synthesising_and_re-organising_the_3R’s_concept_into_a_10R_hierarchy

Volk, R., Stallkamp, C., Herbst, M., & Schultmann, F. (2021). Regional rotor blade waste quantification in Germany until 2040. Resources, Conservation and Recycling, 172, 105667.
DOI 10.1016/j.resconrec.2021.105667

Vyzinkarova, D., & Brunner, P. H. (2013). Substance Flow Analysis of Wastes Containing Polybrominated Diphenyl Ethers. Journal of Industrial Ecology, 17(6), 900–911.
DOI 10.1111/jiec.12054

Werner, M., Narayanan, A., Rabenschlag, O., Nagarajan, P., Saboo, R., Banatao, R., Moedritzer, S., Zilnik, D., Wong, T., & Meza, M. (2022). Closing the Plastics Circularity Gap—Full Report. Google. https://bbia.org.uk/wp-content/uploads/2022/04/closing-plastics-gap-full-report.pdf

Wilson, G. T., Smalley, G., Suckling, J. R., Lilley, D., Lee, J., & Mawle, R. (2017). The hibernating mobile phone: Dead storage as a barrier to efficient electronic waste recovery. Waste Management, 60, 521–533.
DOI 10.1016/j.wasman.2016.12.023

WindEurope. (2020). Accelerating Wind Turbine Blade Circularity. WindEurope. https://windeurope.org/intelligence-platform/product/accelerating-wind-turbine-blade-circularity/

WindEurope. (2021). How to build a circular economy for wind turbine blades through policy and partnerships. WindEurope. https://windeurope.org/policy/position-papers/how-to-build-a-circular-economy-for-wind-turbine-blades-through-policy-and-partnerships/

WindEurope. (2023). Wind energy in Europe: 2022 Statistics and the outlook for 2023-2027. WindEurope. https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/

Wu, Q., Zhang, Q., Chen, X., Song, G., & Xiao, J. (2024). Life cycle assessment of waste tire recycling: Upgraded pyrolytic products for new tire production. Sustainable Production and Consumption, 46, 294–309.
DOI 10.1016/j.spc.2024.02.029

Xie, S., Lim, Y. T., Wang, H., Yi, W., & Antwi-Afari, M. F. (2024). Location and Capacity Optimization of Waste Recycling Centers: Mathematical Models and Numerical Experiments. Applied Sciences, 14(16), Article 16.
DOI 10.3390/app14167039

Yang, X., & Berglund, L. A. (2020). Recycling without Fiber Degradation—Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose Fibers. ACS Sustainable Chemistry & Engineering, 8(2), 1146–1154.
DOI 10.1021/acssuschemeng.9b06176

Zero Waste Europe. (2022). Incineration Residues: The dust under the carpet - Zero Waste Europe. Zero Waste Europe. https://zerowasteeurope.eu/press-release/incineration-residues-the-dust-under-the-carpet/

Zhong, H.-N., Su, Q.-Z., Chen, S., Li, D., Sui, H., Zhu, L., Dong, B., Wu, S., & Wang, X. (2025). Revealing contaminants in China’s recycled PET: Enabling safe food contact applications. Resources, Conservation and Recycling, 212, 107947.
DOI 10.1016/j.resconrec.2024.107947