Released under All rights reserved
Copyright: © 2025 CISA Publisher
Becker, G.C., Wüst, D., Köhler, H., Lautenbach, A., Kruse, A., 2019. Novel approach of phosphate-reclamation as struvite from sewage sludge by utilising hydrothermal carbonization. J. Environ. Manage. 238, 119–125.
DOI 10.1016/j.jenvman.2019.02.121
Cotana, F., Messineo, A., Petrozzi, A., Coccia, V., Cavalaglio, G., Aquino, A., 2014. Comparison of ORC turbine and stirling engine to produce electricity from gasified poultry waste. Sustain. 6, 5714–5729.
DOI 10.3390/su6095714
Danon, B., Hongsiri, W., van der Aa, L., de Jong, W., 2014. Kinetic study on homogeneously catalyzed xylose dehydration to furfural in the presence of arabinose and glucose. Biomass and Bioenergy 66, 364–370.
DOI 10.1016/j.biombioe.2014.04.007
Fu, H., Wang, F., Liu, Z., Duan, X., Wang, L., Yi, W., Zhang, D., 2025. Role of secondary char on the fuel properties and pyrolysis behaviors of hydrochars: Effect of temperature and liquid-solid ratio. Fuel Process. Technol. 267, 108167.
DOI 10.1016/j.fuproc.2024.108167
García-Bordejé, E., Pires, E., Fraile, J.M., 2017. Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon N. Y. 123, 421–432.
DOI 10.1016/j.carbon.2017.07.085
Hedin, N., Kruse, A., 2020. Assessment of the effects of process water recirculation on the surface chemistry and morphology of hydrochar Renew. Energy 155, 1173-1180.
DOI 10.1016/j.renene.2020.04.050
Heidari, M., Dutta, A., Acharya, B., Mahmud, S., 2019. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 92, 1779–1799.
DOI 10.1016/j.joei.2018.12.003
Ibarra-Gonzalez, P., Rong, B.G., 2019. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chinese J. Chem. Eng. 27, 1523–1535.
DOI 10.1016/j.cjche.2018.09.018
Ischia, G., Berge, N.D., Bae, S., Marzban, N., Rom, S., Farru, G., Kulli, B., Fiori, L., 2024. Advances in Research and Technology of Hydrothermal Carbonization : Achievements and Future Directions. Agronomy 14.
DOI 10.3390/agronomy14050955
Jia, J., Wang, R., Chen, H., Xue, Q., Yin, Q., Zhao, Z., 2022. Interaction mechanism between cellulose and hemicellulose during the hydrothermal carbonization of lignocellulosic biomass. Energy Sci. Eng. 10, 1–12.
DOI 10.1002/ese3.1117
Lee, M., Lin, Y.L., Chiueh, P. Te, Den, W., 2020. Environmental and energy assessment of biomass residues to biochar as fuel: A brief review with recommendations for future bioenergy systems. J. Clean. Prod. 251, 119714.
DOI 10.1016/j.jclepro.2019.119714
Lucian, M., Volpe, M., Gao, L., Piro, G., Goldfarb, J.L., Fiori, L., 2018. Impact of hydrothermal carbonization conditions on the formation of hydrochars and secondary chars from the organic fraction of municipal solid waste. Fuel 233, 257–268.
DOI 10.1016/j.fuel.2018.06.060
Messineo, A., Panno, D., 2008. Municipal waste management in Sicily: Practices and challenges. Waste Manag. 28, 1201–1208.
DOI 10.1016/j.wasman.2007.05.003
Messineo, A., Volpe, R., Asdrubali, F., 2012. Evaluation of net energy obtainable from combustion of stabilised olive mill by-products. Energies 5, 1384–1397.
DOI 10.3390/en5051384
Nunes, L.J.R., Causer, T.P., Ciolkosz, D., 2020. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658.
DOI 10.1016/j.rser.2019.109658
Picone, A., Volpe, M., Giustra, M.G., Bella, G. Di, Messineo, A., 2021. Hydrothermal Carbonization of Lemon Peel Waste : Preliminary Results on the Effects of Temperature during Process Water Recirculation. Appl. Syst. Innov. 4.
DOI 10.3390/asi4010019
Regmi, P., Luis, J., Moscoso, G., Kumar, S., Cao, X., Mao, J., Schafran, G., 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manag. 109, 61-69.
DOI 10.1016/j.jenvman.2012.04.047
Rodríguez Correa, C., Ngamying, C., Klank, D., Kruse, A., 2018. Investigation of the textural and adsorption properties of activated carbon from HTC and pyrolysis carbonizates. Biomass Convers. Biorefinery 8, 317–328.
DOI 10.1007/s13399-017-0280-8
Sevilla, M., Fuertes, A.B., 2009. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon N. Y. 47, 2281–2289.
DOI 10.1016/j.carbon.2009.04.026
Sharma, H.B., Sarmah, A.K., Dubey, B., 2020. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew. Sustain. Energy Rev. 123, 109761.
DOI 10.1016/j.rser.2020.109761
Shen, Y., 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy 134, 105479.
DOI 10.1016/j.biombioe.2020.105479
Volpe, M., Fiori, L., Merzari, F., Messineo, A., Andreottola, G., 2020. Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery. Chem. Eng. Trans. 80, 199–204.
DOI 10.3303/CET2080034
Volpe, M., Picone, A., Luz, F.C., Mosonik, M.C. at, Volpe, R., Messineo, A., 2022. Potential pitfalls on the scalability of laboratory-based research for hydrothermal carbonization. Fuel 315, 123189.
DOI 10.1016/j.fuel.2022.123189
Volpe, R., Messineo, S., Volpe, M., Messineo, A., 2016. Catalytic Effect of Char for Tar Cracking in Pyrolysis of Citrus Wastes , Design of a Novel Experimental Set Up and First Results 50, 181–186.
DOI 10.3303/CET1650031
Wang, R., Jia, J., Jin, Q., Chen, H., 2022. Forming mechanism of coke microparticles from polymerization of aqueous organics during hydrothermal carbonization process of biomass. Carbon N. Y. 192, 50–60.
DOI 10.1016/j.carbon.2022.02.030
Wang, R., Jin, Q., Ye, X., Lei, H., Jia, J., Zhao, Z., 2020. Effect of process wastewater recycling on the chemical evolution and formation mechanism of hydrochar from herbaceous biomass during hydrothermal carbonization. J. Clean. Prod. 277, 123281.
DOI 10.1016/j.jclepro.2020.123281
Wang, T., Zhai, Y., Zhu, Y., Li, C., Zeng, G., 2018. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 90, 223–247.
DOI 10.1016/j.rser.2018.03.071
Wilk, M., Magdziarz, A., Kalemba-Rec, I., Szymańska-Chargot, M., 2020. Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy 202, 117717.
DOI 10.1016/j.energy.2020.117717
Wu, S., Wang, Q., Man, H., Wu, D., Lu, Q., Pan, S., Bai, J., Cui, D., Zhang, X., 2025. Recent advances on hydrothermal carbonization of biomass for carbon-negative materials : From mechanistic insights to functional applications. Ind. Crop. Prod. 237, 122142.
DOI 10.1016/j.indcrop.2025.122142
Zhou, Y., Shi, W., Engler, N., Nelles, M., 2021. High-value utilization of kitchen waste derived hydrochar in energy storage regulated by circulating process water. Energy Convers. Manag. 229, 113737.
DOI 10.1016/j.enconman.2020.113737
Fabiano Asunis, Giovanna Cappai, Alessandra Carucci, Martina Cera, Giorgia De Gioannis, Gian Piero Deidda, Gianluigi Farru, Giorgio Massacci, Aldo Muntoni, Martina Piredda and Angela Serpe
Published 17 Feb 2026Tommy Ender, Vicky Shettigondahalli Ekanthalu and Michael Nelles
Published 17 Feb 2026Filippo Marchelli, Roberta Ferrentino, Giulia Ischia, Marco Calvi, Gianni Andreottola and Luca Fiori
Published 17 Feb 2026| Title | Support | Price |
|---|