Released under All rights reserved
Copyright: © 2023 CISA Publisher
Aragón-Briceño, C. I., Pozarlik, A. K., Bramer, E. A., Niedzwiecki, L., Pawlak-Kruczek H., Brem, G., 2021. Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review, Renewable Energy, Volume 171, 401-415.
DOI 10.1016/j.renene.2021.02.109
Asghari, F. S., Yoshida, H., 2006. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d-Fructose in Subcritical Water. Ind. Eng. Chem. Res. 2006, 45, 7, 2163–2173.
DOI 10.1021/ie051088y
AVA-CO2 Schweiz AG. 2014. “AVA-CO2 Achieves a Breakthrough in Phosphorus Recovery and Introduces the “AVA cleanphos” Process.” September. Accessed May 2023. https://www.businesswire.com/news/home/20140910006209/en/AVA-CO2-Achieves-a-Breakthrough-in-Phosphorus-Recovery-and-Introduces-the-AVA-cleanphos-Process
Basse, S., Buck, P., Domschke, T., Elstermann, N., Esser, R., Hanßen, H., Haselwimmer, T., Hiller, G., Jasper, M., Kappa, S., Kristkeitz, R., Lehrmann, F., Ludwig, P., Maurer, M., Ostertag, M., Peters, U., Pietsch, B., Steier, K., Werther, J., Wessel, M., Nath, C., Reifenstuhl, R., 2012. Merkblatt DWA-M 387 Thermische Behandlung von Klärschlämmen – Mitverbrennung in Kraftwerken. DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V
Blach, T., Engelhart, M., 2020. Optimizing the Hydrothermal Carbonization of Sewage Sludge—Response Surface Methodology and the Effect of Volatile Solids. Water, 13 (9), p. 1225.
DOI 10.3390/w13091225
Blöhse, D., 2017. Hydrothermale Karbonisierung – Nutzen dieser Konversionstechnik für die optimierte Entsorgung feuchter Massenreststoffe (Doctoral dissertation). University Essen, Germany: Duisburg-Essen. Retrieved from https://duepublico2.uni-due.de/receive/duepublico
Bozkurt, S., Moreno, L., Neretnieks, I., 2000. Long-Term Processes in Waste Deposits. Science of the Total Environment, 250, 101-121.
DOI 10.1016/S0048-9697(00)00370-3
Buttmann, M., 2023. TerraNova®ultra project for sewage sludge and biowaste in Poland. Retrieved from https://www.terranova-energy.com/en/terranovaultra-project-for-sewage-sludge-and-biowaste-in-poland/ Last retrieved 31.05.2023
Chen, H., Rao, Y., Cao, L., Shi, Y., Hao, S., Lou, G., Zhang, S., 2019. Hydrothermal conversion of sewage sludge: Focusing on the characterization of liquid products and their methane yields. Chemical Engineering Journal, Volume 357, 2019, Pages 367-375.
DOI 10.1016/j.cej.2018.09.180
Crocker, M., 2011. Thermo chemical Conversion of Biomass to Liquid Fuels and chemicals. Royal Society of Chemistry Publishing.
DOI 10.1039/9781849732260
Danso-Boateng, E., Sharma, G., Wheatly, A. D., Martin, S. J., Holdich, R. G., 2015. Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresource Technology, Volume 177, 2015. 318-327.
DOI 10.1016/j.biortech.2014.11.096
Djandja, O. S., Yin, L., Wang, Z.-C., Duan, P.-G., 2021. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Safety and Environmental Protection, 151, 101–127.
DOI 10.1016/j.psep.2021.05.006
Ehrnström, Matilda Sirén. 2016. “Recovery of Phosphorus from HTC Converted Municipal Sewage Sludge.” MASTER OF SCIENCE THESIS, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology
Ekpo, U., Ross, A. B., Camargo-Valero, M. A., Fletcher, L. A., 2016. Influence of pH on hydrothermal treatment of swine manure: Impact on extraction of nitrogen and phosphorus in process water. Bioresource Technology, Volume 214, 2016, Pages 637-644.
DOI 10.1016/j.biortech.2016.05.012
Geng, H., Xu, Y., Zheng, L., Gong, H., Dai, L., Dai, X., 2020. An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, Volume 266, Part 2, 115375.
DOI 10.1016/j.envpol.2020.115375
Gerner, G., Meyer, L., Wanner, R., Keller, T., Krebs, R. (2021): Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production. Energies 2021, 14, 2697.
DOI 10.3390/en14092697
Heckenmüller, M., Narita, D., Klepper, G., 2014. Global availability of phosphorus and its implications for global food supply: An economic overview, Kiel Institute for the World Economy (IfW), Kiel
Huang, R, Fang, C., Zhang, B., Tang, Y., 2018. Transformations of Phosphorus Speciation during (Hydro)thermal Treatments of Animal Manures. Environ. Sci. Technol. 52 (5): 3016-3026.
DOI 10.1021/acs.est.7b05203
Huezo, L., Vasco-Correa, J., Shah, A., 2021. Hydrothermal carbonization of anaerobically digested sewage sludge for hydrochar production. Bioresource Technology Reports, Volume 15, 2021, 100795.
DOI 10.1016/j.biteb.2021.100795
Kambo, H. S., Minaret, J., Dutta, A. (2018): Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product?. Waste Biomass Valor 9, 1181–1189 (2018).
DOI 10.1007/s12649-017-9914-0
Klärschlammverordnung (AbfKlärV) vom 27. September 2017 (BGBl. I S. 3465), die zuletzt durch Artikel 137 der Verordnung vom 19. Juni 2020 (BGBl. I S. 1328) geändert worden ist
Krüger, O., Adam, C., 2015. Recovery potential of German sewage sludge ash, Waste Management, Volume 45, 2015, 400-406.
DOI 10.1016/j.wasman.2015.01.025
Kruse, A., Funke, A., Titirici, M.-M., 2013. Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, Volume 17, Issue 3, 2013, 515-521.
DOI 10.1016/j.cbpa.2013.05.004
Kwapinski, W., Kolinovic, I., Leahy, J.J., 2021. Sewage Sludge Thermal Treatment Technologies with a Focus on Phosphorus Recovery: A Review. Waste Biomass Valor 12, 5837–5852.
DOI 10.1007/s12649-020-01280-2
Langenohl, T., 2015. Auswirkungen der sich verändernden Rahmenbedingungen auf die Entsorgungssicherheit für Klärschlamm. KA Korrespondenz Abwasser, Abfall, Jahrgang 62, Heft 3, 249-256.
DOI 10.3242/kae2015.03.003
Leng, L., Zhang, W., Leng, S., Chen, J., Yang, L., Li, H., Jiang, S., Huang, H., 2020: Bi.oenergy recovery from wastewater produced by hydrothermal processing biomass_Progress, challenges, and opportunities. Science of The Total Environment, Volume 748, 2020, 142383,
DOI 10.1016/j.scitotenv.2020.142383
Li, F., Ji, W., Chen, Y., Gui, X., Li, J., Zhao, J., Zhou, C., 2021. Effect of Temperature on the Properties of Liquid Product from Hydrothermal Carbonization of Animal Manure and Function as a Heavy Metal Leaching Agent in Soil. Water Air Soil Pollut 232, 189 (2021).
DOI 10.1007/s11270-021-05134-y
Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J., 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):71–106.
DOI 10.4155/bfs.10.81
Liu, T., Liu, Z., Zheng, Q., Lang, Q., Xia, Y., Peng, N., Gai, C., 2018. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour Technol 247:282–290.
DOI 10.1016/j.biortech.2017.09.090
Malhotra, M. and Garg, A., 2020. Hydrothermal carbonization of centrifuged sewage sludge: Determination of resource recovery from liquid fraction and thermal behaviour of hydrochar. Waste Management, Volume 117, November 2020, 114-123.
DOI 10.1016/j.wasman.2020.07.026
Mix-Spagl, K., 2017. Die neue Klärschlammverordnung – Was müssen Betreiber beachten? Wwt-Online.de - Special Klärschlamm - Recht & Gesetz, 2017, 10, 15-17
Montag, D., Adam, C., Baumann, P., Frank, D., Kabbe, C., Klein, D., Meyer, C., Mocker, M., Morf, L., Pinnekamp, J., Roskosch, A., Schaum, C., Schneichel, W., Schneider, Y., Wett, M., Arnold, U., Heidecke, P., Sichler, T., 2022. Rechtliche Vorgaben der Klärschlammverordnung und deren Auswirkungen auf die Phosphor-Rückgewinnung. KA Korrespondenz Abwasser, Abfall, Jahrgang 69, Heft 5, 406-414.
DOI 10.3242/kae2022.05.005
Pérez, C., Boily, J. F., Jansson, S., 2021. Acid-Induced Phosphorus Release from Hydrothermally Carbonized Sewage Sludge. Waste Biomass Valor 12, 6555–6568.
DOI 10.1007/s12649-021-01463-5
Pérez, Carla, Jean-François Boily, Nils Skoglund, Stina Jansson, and Jerker Fick. 2022. “Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids.” Waste Management 60-69.
DOI 10.1016/j.wasman.2022.07.023
Petzet, S., Peplinski, B., Cornel, P., 2012. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46: 3769-3780.
DOI 10.1016/j.watres.2012.03.068
Quicker, P. and Weber, K., 2016. Biokohle - Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten. Springer-Verlag, Berlin
Reißmann, D., Thrän, D., Blöhse, D., Bezama, A., 2020. Hydrothermal carbonization for sludge disposal in Germany: A comparative assessment for industrial-scale scenarios in 2030. Journal of Industrial Ecology, 25: 720– 734.
DOI 10.1111/jiec.13073
Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J., Mumme, J., 2014. Review Article: Hydrothermal Carbonization of Biomass for Energy and Crop Production. Applied Bioenergy 2014. 1:11-29.
DOI 10.2478/apbi-2014-0001
Reza, M. T., Uddin, M. H., Lynam, J. G., 2014. Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conv. Bioref. 4, 311–321.
DOI 10.1007/s13399-014-0115-9
Roskosch, A., Heidecke, Patric, Bannick, C., Brandt, S., Bernicke, M., Dienemann, C., Gast, M., Hofmeier, M., Kabbe, C., Schwirn, K., Vogel, I., Völker, D., Wiechmann, B., 2018. Klärschlammentsorgung in der Bundesrepublik Deutschland (sewage sludge disposal in Germany). Umweltbundesamt, Dessau-Roßlau
Saetea, P., Tippayawong, N., 2013. Recovery of Value-Added Products from Hydrothermal Carbonization of Sewage Sludge. Chemical Engineering, Volume 2013.
DOI 10.1155/2013/268947
Schnell, M., Horst, T., Quicker, P., 2020. Thermal treatment of sewage sludge in Germany: A review. Journal of Environmental Management, Volume 263, 110367.
DOI 10.1016/j.jenvman.2020.110367
Shettigondahalli, E. V., Morscheck, G., Narra, S., Nelles, M., 2020. Hydrothermal Carbonization—A Sustainable Approach to Deal with the Challenges in Sewage Sludge Management. In: Ghosh, S. (eds) Urban Mining and Sustainable Waste Management. Springer, Singapore.
DOI 10.1007/978-981-15-0532-4_29
Shettigondahalli, E. V., Narra, S., Ender, T., Antwi, E., Nelles, M., 2022. Influence of Post- and Pre-Acid Treatment during Hydrothermal Carbonization of Sewage Sludge on P-Transformation and the Characteristics of Hydrochar. Processes; 10(1):151.
DOI 10.3390/pr10010151
Shi, N., Liu, Q., He, X., Wang, G., Chen, N., Peng, J., Longlong Ma, 2019. Molecular Structure and Formation Mechanism of Hydrochar from Hydrothermal Carbonization of Carbohydrates. Energy Fuels 2019, 33, 10, 9904–9915.
DOI 10.1021/acs.energyfuels.9b02174
Statistisches Bundesamat, DESTATIS, 2023. Klärschlammentsorgung nach Bundesländern. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Umwelt/Wasserwirtschaft/Tabellen/liste-klaerschlammverwertungsart.html
Usman, M., Chen, H., Chen, K., Ren, S., Clark, J. H., Fan, J., Luo, G., Zhang, S. (2019): Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review. Green Chem., 2019,21, 1553-1572.
DOI 10.1039/C8GC03957G
vom Eyser, C., Palmu, K., Schmidt, T.C., Tuerk, J., 2015. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization. Sci. Total Environ. 537, 180–186.
DOI 10.1016/j.scitotenv.2015.08.021
Wang, H., Yang, Z., Li, X., 2020. Distribution and transformation behaviors of heavy metals and phosphorus during hydrothermal carbonization of sewage sludge. Environ Sci Pollut Res 27, 17109–17122.
DOI 10.1007/s11356-020-08098-4
Wang, L., Chang, Y., Liu, Q., 2019A. Fate and distribution of nutrients and heavy metals during hydrothermal carbonization of sewage sludge with implication to land application, Journal of Cleaner Production, Volume 225, 2019, 972-983.
DOI 10.1016/j.jclepro.2019.03.347
Wang, L., Chang, Y., Li, A., 2019B. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renewable and Sustainable Energy Reviews, Volume 108, 2019, 423-440.
DOI 10.1016/j.rser.2019.04.011
Wilson, C.-A., Novak, J.-T., 2009. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Research, Volume 43, Issue 18, 2009, 4489-4498.
DOI 10.1016/j.watres.2009.07.022
Wirth, B., Reza, M. T., Mumme, J., 2015. Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge. Bioresource Technology, Volume 198, 2015, Pages 215-222.
DOI 10.1016/j.biortech.2015.09.022
Woriescheck, T., 2019. Charakterisierung, Aufreinigung und Wertstoffgewinnung von Prozesswasser der Hydrothermalen Carbonisierung. (Doctoral dissertation). University of Oldenburg, Germany: Oldenburg. Retrieved from https://plus.orbis-oldenburg.de/primo-explore/fulldisplay?docid=49GBVUOB_ALMA51338789630003501&context=L&vid=UB_V1&lang=de_DE&search_scope=UB_all&adaptor=Local%20Search%20Engine&tab=default_tab&query=any,contains,49GBVUOB_ALMA51338789630003501
Xu, Z.-X., Ma, X.-Q., Zhou, J., Duan, P.-G., Ahmad, A., Luque, R., 2022. The influence of key reactions during hydrothermal carbonization of sewage sludge on aqueous phase properties: A review. Journal of Analytical and Applied Pyrolysis, Volume 167, 2022, 105678.
DOI 10.1016/j.jaap.2022.105678
Zhang, H.-Y., Ju, Y.-Y., Fan, Z.-M., Wang, B., 2010. Acid buffer capacity of sewage sludge barrier for immobilization of heavy metals. Huan Jing Ke Xue. 2010 Dec;31(12):2956-64. Chinese. PMID: 21360886
Fabiano Asunis, Giovanna Cappai, Alessandra Carucci, Martina Cera, Giorgia De Gioannis, Gian Piero Deidda, Gianluigi Farru, Giorgio Massacci, Aldo Muntoni, Martina Piredda and Angela Serpe
Published 30 Sep 2023Filippo Marchelli, Roberta Ferrentino, Giulia Ischia, Marco Calvi, Gianni Andreottola and Luca Fiori
Published 30 Sep 2023Fabian Gievers, Achim Loewen and Michael Nelles
Published 30 Sep 2023Title | Support | Price |
---|