an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Lorena Figueroa-Escamilla - Environmental Engineering Department, Institute of Engineering, National University of Mexico, Mexico
  • Simon Gonzalez-Martinez - Environmental Engineering Department, Institute of Engineering, National University of Mexico, Mexico
  • Rosalinda Campuzano - Biotechnology Department, Universidad Autónoma Metropolitana, Mexico
  • Idania Valdez-Vazquez - Unidad Académica Juriquilla, Institute of Engineering, National University of Mexico, Mexico


Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


In some countries, garden trimmings are not considered part of urban solid wastes. Lignocellulosic substances contribute to heterogeneity, complicating the analysis of the organic fraction of municipal solid waste (OFMSW) and, subsequently, for methane production. Some of the substances contained in OFMSW are readily biodegradable, and others are not. This work analyses OFMSW from Mexico City and the methane production from its separate components. From OFMSW, nine fractions were visually identified and separated. Including bromatological and fibre analysis, the characterisation of OFMSW and its components was made to determine how the different substances influence methane production. Together, branches, dry leaves, fresh garden trimmings, unsorted wastes (mainly garden trimmings), kitchen paper, and waste vegetables represent 56 % of OFMSW in weight. Fruit waste and unsorted organics contribute to 60 % of the total methane production. Except for branches and dry leaves, methane production increases inversely with the content of lignocellulosic compounds. Animal waste, having the highest concentrations of proteins and lipids and the lowest in lignocellulosic substances, is characterised by the highest level of methane production. Fibre-rich fractions in OFMSW contributed with little or no methane production. Higher concentrations of lignocellulosic substances in the fractions resulted in lower methane production rates.


Editorial History

  • Received: 26 Feb 2021
  • Revised: 26 Apr 2021
  • Accepted: 17 May 2021
  • Available online: 30 Jun 2021


Alibardi, L., Cossu, R. 2015. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management. 36, 147-155.
DOI 10.1016/j.wasman.2014.11.019

Alibardi, L., Cossu, R. 2016. Effects of carbohydrate, protein and lipid content of organic waste fraction and fermentation products. Waste Manage. 47 (Part A), 69-77
DOI 10.1016/j.wasman.2015.07.049

AOAC, 2012. AOAC Official Methods of Analysis, 19th edition In: George Latimer, Jr. (Ed.), Association of Official Analytical Chemists, USA

APHA. 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation. Washington D.C., USA

ASTM D5231-92. 2016. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste, ASTM International, West Conshohocken, PA, 2016,
DOI 10.1520/D5231-92R16

Bajpai P. 2017. Basics of Anaerobic Digestion Process. In: Anaerobic Technology in Pulp and Paper Industry. Springer Briefs in Applied Sciences and Technology. Springer, Singapore.
DOI 10.1007/978-981-10-4130-3_2

Banks, C.J., Chesshire, M., Stringfellow, A. 2008. A pilot-scale comparison of mesophilic and thermophilic digestion of source segregated domestic food waste. Water Sci. Technol. 58, 1475-1481.
DOI 10.2166/wst.2008.513

Bolzonella, D., Fatone, F., Pavan, P., Cecchi, F., 2005. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 44 (10), 3412–3418.
DOI 10.1021/ie048937m

Buswell, A.M., Mueller, H.F. 1952. Mechanism of Methane Fermentation. Ind. Eng. Chem. 44 (3) 550-552.
DOI 10.1021/ie50507a033

Campuzano, R., González-Martínez, S. 2015. Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresour. Technol. 178, 247-253.
DOI 10.1016/j.biortech.2014.08.042

Campuzano, R., González-Martínez, S., 2016. Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manage. 54, 3-12.
DOI 10.1016/j.wasman.2016.05.016

Davidsson, A., Gruvberger, C., Christensen, T.H., Hansen, T.L., Jansen, J.C. 2007. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage., 27, 406-414.
DOI 10.1016/j.wasman.2006.02.013

Dong, L., Zhenhong, Y., Yongming, S. 2010. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology. 101, 2722-2728.
DOI 10.1016/j.biortech.2009.12.007

Edwiges, T., Frare, L., Mayer, B., Lins, L., Triolo, J.M., Flotats, X., de Mendosa Costa, M.S.S. (2018). Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manage. 71, 618-625.
DOI 10.1016/j.wasman.2017.05.030

Fonoll, X., Astals, S., Dosta, J., Mata-Alvarez, J. 2016. Impact of paper and cardboard suppression on OFMSW anaerobic digestion. Waste Manage. 56, 100-105.
DOI 10.1016/j.wasman.2016.05.023

Forster-Carneiro, T., Pérez, M., Romero, L.I. 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 99, 6994-7002.
DOI 10.1016/j.biortech.2008.01.018

Ghanimeh, S., El Fadel, M., Saikaly, P. 2012. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology. 117, 63-71.
DOI 10.1016/j.biortech.2012.02.125

Goering, H.K., Van Soest, P.J. 1970. Forage Fiber Analyses: Apparatus, Reagents, Procedures, and Some Applications. Volume 379, Agriculture handbook. U.S.D.A. Agricultural Research Service. USA

González-Miranda, U., González-Martínez, S., Campuzano, R. 2016. Methane production from organic solid waste components. Sixth International Symposium on Energy from Biomass and Waste. Venice, Italy

Hanc, A., Novak, P., Dvorak, M., Habart, J., Svehla, P. 2011. Composition and parameters of household bio-waste in four seasons. Waste Management. 31, 1450-1460.
DOI 10.1016/j.wasman.2011.02.016

Hartmann, H., Ahring, B. K. 2006. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview. Water Science and Technology. 53 (8) 7-22.
DOI 10.2166/wst.2006.231

Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100 (2009) 10-18.
DOI 10.1016/j.biortech.2008.05.027

Hoornweg, D., Bhada-Tata, P., Kennedy, C. 2013. Waste Production Must Peak This Century. Nature, 502 (7473) 615-617

Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a waste 2.0: A global snapshot on solid waste management to 2050. World Bank, Washington D.C., USA

Kobayashi, T., Xu, K. Q., Li, Y. Y., Inamori, Y. (2012). Evaluation of hydrogen and methane production from municipal solid wastes with different compositions of fat, protein, cellulosic materials and the other carbohydrates. Int. J. Hydrogen Energy. 37, 15711-15718.
DOI 10.1016/j.ijhydene.2012.05.044

Kumar, S.; Dhar, H.; Nair, V. V.; Rena; Goveni, J.; Arya, S.; Bhattacharya, J. K; Vaidya, A. N.; Akolkar, A. B. (2019). Environmental quality monitoring and impact assessment of solid waste dumpsites in high altitude subtropical regions. Journal of Environmental Management. 252, 109681.
DOI 10.1016/j.jenvman.2019.109681

Labatut, R.A., Angenent, N.T., Scott, N.R. 2011. Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 102, 2255-2264.
DOI 10.1016/j.biortech.2010.10.035

Lanzas, C., Sniffen, C.J., Seo, S., Tedeschi, L.O., Fox, D.G. 2007. A revised CNCPS feed carbohydrate fractionation scheme for formulating rations for ruminants. Animal Feed Science and Technology. 136, 167-190.
DOI 10.1016/j.anifeedsci.2006.08.025

Manjunathaa, G.S. Chavan, D, Lakshmikanthan, P, Swamya Rajashekar; Kumar, S. 2019. Estimation of heat generation and consequent temperature rise from nutrients like carbohydrates, proteins and fats in municipal solid waste landfills in India. Science of The Total Environment. 2019, 135610.
DOI 10.1016/j.scitotenv.2019.135610

Möller, K., Müller, T., 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences. 12 (3), 242–257.
DOI 10.1002/elsc.201100085

Møller, H.B., Sommer, S.G., Ahring, B.K. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenergy. 26 (5) 485-495.
DOI 10.1016/j.biombioe.2003.08.008

Naroznova, I., Møller, J., Scheutz, C. 2016. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste. Waste Manage. 50, 39-48.
DOI 10.1016/j.wasman.2016.02.008

Nayono, S.E., Gallert, C., Winter, J. 2009. Food waste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Sci. Technol. 59, 1169-1178.
DOI 10.2166/wst.2009.102

Nielfa, A., Cano, R., Vinot, M., Fernández, E., Fdz-Polanco, M. 2015. Anaerobic digestion modeling of the main components of organic fraction of municipal solid waste. Process Safety and Environmental Protection. 94, 180-187.
DOI 10.1016/j.psep.2015.02.002

Ohannessian, A., Desjardin, V., Chatain, V. Germain, P. 2008. Volatile organic silicon compounds: the most undesirable contaminants in biogases. 58 (9) 1775-1781. Water Science and Technology,
DOI 10.2166/wst.2008.498

Papurello, D. 2019. Direct injection mass spectrometry technique for the odorant losses at ppb(v) level from nalophan™ sampling bags. International Journal of Mass Spectrometry, 436, 137-146.
DOI 10.1016/j.ijms.2018.12.008

Paul, S., Dutta, A. 2018. Challenges opportunities of lignocelullosic biomass for anaerobic digestion. Resources, Conservation & Recycling.130, 164-174.
DOI 10.1016/j.resconrec.2017.12.005

Rasi, S., Veijanen, V., Rintala, J. 2006. Trace compounds of biogas from different biogas production plants. Energy, 32 (8), 1375-1380.
DOI 10.1016/

Sajeena Beevi, B., Madhu, G., Deepak Kumar Sahoo 2015. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste. Waste Management. 36, 93-97.
DOI 10.1016/j.wasman.2014.09.024

Sniffen, C.J.,O'Connor, J.D., Van Soest, P.J., Fox, D.G., Russell, J.B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70, 3562-3577.
DOI 10.2527/1992.70113562x

Symons, G.E., Buswell, A.M. 1933. The Methane Fermentation of Carbohydrates. J. Am. Chem. Soc. 55 (5) 2028-2036.
DOI 10.1021/ja01332a039

Taherzadeh, M.J., Karimi, K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Science. 9, 1621-1651.
DOI 10.3390/ijms9091621

Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M.J., Horvath, I.S. 2010. Pretreatment of paper tube residuals for improved biogas production. Bioresour. Technol. 101, 1206-1212.
DOI 10.1016/j.biortech.2009.09.029

Triolo, J.M., Sommer, S.G., Moller, H., Weisbjerg, M.R., Jiang, 2011. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395-9402.
DOI 10.1016/j.biortech.2011.07.026

VALORGAS, (2010). Compositional analysis of food waste from study sites in geographically distinct regions of Europe. MTT Agrifood Research Finland. VALORGAS Project

Van Soest, P.J. 1963. Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists. 46 (1963) 829-835

VDI 4630. 2016. Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests. Verein Deutscher Ingenieure. Editor Beuth Verlag, Germany

Xu, F., Wang, Z. W., Li, Y. 2014. Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresour. Technol. 173, 168-176.
DOI 10.1016/j.biortech.2014.09.090

Wainaina, S., Awasthi, M.K., Chen, H., Singh, E., Kumar, A., Ravindran, B., Sarsaiya, S., Awasthi, S.K., Liu, T., Duan, Y., Kumar, S., Zhang, Z., Taherzadeh, M.J., 2019. Resource Recovery and Circular Economy from Organic Solid Waste using Aerobic and Anaerobic Digestion Technologies, Bioresource Technology. 301, 122778.
DOI 10.1016/j.biortech.2020.122778