Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
Abdou, T. R., Espinosa, D. C. R., & Tenório, J. A. S. (2016). Recovering of Carbon Fiber Present in an Industrial Polymeric Composite Waste through Pyrolysis Method while Studying the Influence of Resin Impregnation Process: Prepreg. In R. E. Kirchain, B. Blanpain, C. Meskers, E. Olivetti, D. Apelian, J. Howarter, A. Kvithyld, B. Mishra, N. R. Neelameggham, & J. Spangenberger (Eds.), REWAS 2016 (pp. 313–318). Springer International Publishing.
DOI 10.1007/978-3-319-48768-7_49
Altmann-Mavaddat, N., Athavale, S., Baumann, M., Bogner, T., Bürbaumer, H., Hirtl, A., Höher, M., Indinger, A., Kalt, G., Knaus, K., Lackner, P., Reidlinger, B., Raimund, W., Schilcher, K., Thenius, G., Tretter, H., Wanjek, M., & Zelalic, A. Klima und Energie: Wissen kompakt. Vienna. https://www.klimafonds.gv.at/wp-content/uploads/sites/16/Klima-und-Energie-Wissen-kompakt-final.pdf
Anderl, M., Zechmeister, A., Geiger, K., Gugele, B., Gössl, M., & Haider, S. (2019). Klimaschutzbericht 2019 (Report / Umweltbundesamt REP-0702). Wien. https://www.umweltbundesamt.at/studien-reports/publikationsdetail?pub_id=2279&cHash=b58b3e425d78c6778b8d595035962135
Baldauf, M. (2022). Grenzwertbestimmung und Analyse von Aluminium- und Kohlenstoffzuschlägen zu Kathodenmaterial aus Lithium-Ionen-Batterien für die Wertmetallrückgewinnung im pyrometallurgischen Reaktorkonzept InduRed [Master thesis]. Montanuniversitaet Leoben, Leoben
Beheshti, R., Tabeshian, A., & Aune, R. E. (2017). Lithium-Ion Battery Recycling Through Secondary Aluminum Production. In L. Zhang, J. W. Drelich, N. R. Neelameggham, D. P. Guillen, N. Haque, J. Zhu, Z. Sun, T. Wang, J. A. Howarter, F. Tesfaye, S. Ikhmayies, E. Olivetti, & M. W. Kennedy (Eds.), The Minerals, Metals & Materials Series. Energy Technology 2017 (pp. 267–274). Springer International Publishing.
DOI 10.1007/978-3-319-52192-3_26
Biswas, A. K. (1981). Principles of blast furnace ironmaking: Theory and practice. Cootha Publ. House
Elwert, T., & Frank, J. (2020). Auf dem Weg zu einem geschlossenen Stoffkreislauf für Lithium-Ionen-Batterien: Towards a Closed Loop for Lithium-Ion Batteries. In E. Thomé-Kozmiensky, O. Holm, B. Friedrich, & D. Goldmann (Eds.), Recycling und Sekundärrohstoffe (pp. 525–530). Thomé-Kozmiensky Verlag GmbH
European Commission. (2020, December 10). Green Deal: Sustainable batteries for a circular and climate neutral economy [Press release]. https://ec.europa.eu/commission/presscorner/detail/en/ip_20_2312
Gao, R., & Xu, Z. (2019). Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin. Journal of Hazardous Materials, 364, 1–10.
DOI 10.1016/j.jhazmat.2018.09.096
Holzer, A. (2019). Pyrometallurgisches Recycling von Aktivmaterial aus der Aufbereitung von Lithium-Ionen-Batterien in einem induktiv beheizten Schüttschichtreaktor [Master Thesis]. Montanuniversitaet Leoben, Leoben
Holzer, A., Windisch-Kern, S., Ponak, C., & Raupenstrauch, H. (2021). A novel pyrometallurgical recycling process for Lithium-Ion-Batteries and its use in recycling LCO and LFP. Metals, 2021(11(1), 149).
DOI 10.3390/met11010149
Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274–286.
DOI 10.1016/j.jpowsour.2018.07.116
Kwon, O., & Sohn, I. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resources, Conservation and Recycling, 158, 104809.
DOI 10.1016/j.resconrec.2020.104809
Li, J., Wang, G., & Xu, Z. (2016). Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials, 302, 97–104.
DOI 10.1016/j.jhazmat.2015.09.050
Liu, C., Lin, J., Cao, H., Zhang, Y., & Sun, Z [Zhi] (2019). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801–813.
DOI 10.1016/j.jclepro.2019.04.304
Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622.
DOI 10.1016/j.jpowsour.2021.229622
Pillot, C. (2019, September 18). The Rechargeable Battery Market and Main Trends 2018-2030. Avicenne Energy. ICM AG. ICBR 2019, Lyon
Ponak, C. (2019). Carbo-thermal reduction of basic oxygen furnace slags with simultaneous removal of phosphorus via the gas phase [Dissertation]. Montanuniversitaet Leoben, Leoben
Sojka, R., Pan, Q., & Billman, L. (September 2020). Comparative study of Lithium-ion battery recycling processes
Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403.
DOI 10.1016/j.seppur.2016.08.031
Thielmann, A., Neef, C., Hettesheimer, T., Döscher, H., Wietschel, M., & Tübke, J. (12 / 2017). Energiespeicher-Roadmap: Hochenergie-Batterien 2030+ und Perspektiven zukünftiger Batterietechnologien. Fraunhofer-Institut für System- und Innovationsforschung ISI. https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cct/lib/Energiespeicher-Roadmap-Dezember-2017.pdf
Windisch-Kern, S., Holzer, A., Ponak, C., Hochsteiner, T., & Raupenstrauch, H. (2021). Thermal analysis of lithium ion battery cathode materials for the development of a novel pyrometallurgical recycling approach. Carbon Resources Conversion, 4, 184–189.
DOI 10.1016/j.crcon.2021.04.005
Windisch-Kern, S., Holzer, A., Ponak, C., & Raupenstrauch, H. (2021). Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging with the InduRed Reactor Concept. Processes : Open Access Journal, 9(1), 84.
DOI 10.3390/pr9010084
Windisch-Kern, S., Holzer, A., Wiszniewski, L., & Raupenstrauch, H. (2021). Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactor. Metals, 11(11), 1844.
DOI 10.3390/met11111844
Xiao, J., Li, J., & Xu, Z. (2017). Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 51(20), 11960–11966.
DOI 10.1021/acs.est.7b02561
Yin, H., & Xing, P. (2019). Pyrometallurgical Routes for the Recycling of Spent Lithium-Ion Batteries. In L. An (Ed.), Recycling of Spent Lithium-Ion Batteries (pp. 57–83). Springer International Publishing.
DOI 10.1007/978-3-030-31834-5_3
Md. Sahil Rafiq, Md. Zawad Amin As-Salek, Sumaiya Sakishib Wriddhi and Nadim Khandaker
Published 14 Sep 2022Pietrogiovanni Cerchier, Francesco Miserocchi, Luca Pezzato, Francesco Nisato, Graziano Tassinato, Carlo Grigolato, Manuele Dabalà and Katya Brunelli
Published 14 Sep 2022Emanuela De Marco, Valentina Fantin, Laura Cutaia and Cristian Chiavetta
Published 14 Sep 2022Title | Support | Price |
---|