an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Alexandra Holzer - Chair of Thermal Processing Technology, Montanuniversität Leoben, Austria
  • Mathias Baldauf - Chair of Thermal Processing Technology, Montanuniversität Leoben, Austria
  • Lukas Wiszniewski - Chair of Thermal Processing Technology, Montanuniversität Leoben, Austria
  • Stefan Windisch-Kern - Chair of Thermal Processing Technology, Montanuniversität Leoben, Austria
  • Harald Raupenstrauch - Chair of Thermal Processing Technology, Montanuniversität Leoben, Austria

Released under CC BY-NC-ND

Copyright: © 2022 CISA Publisher


In terms of an efficient circular economy in the field of the steadily increasing use of lithium-ion batteries, sustainable recycling methods are of fundamental importance. Therefore, the Chair of Thermal Processing Technology at Montanuniversitaet Leoben has developed the so-called InduRed reactor, a carbo-thermal concept to recover valuable metals from this waste stream. For optimization and further development of this technology, it is essential to have a sound knowledge of the cathode materials' behavior in combination with various impurities in the high-temperature range under reducing conditions. Detailed experiments were carried out in a heating microscope at temperatures up to 1620°C and argon purge. Aluminum from the electrode conductor foils and an excessive proportion of graphite from the anode were identified as the impurities with the most significant negative influence on the process. An optimum melting behavior was found during the tests at an admixture of 10 wt. % C and 1.95 wt. % Al to the cathode material NMC622 (LiNi0.6Mn0.2Co0.2O2).


Editorial History

  • Received: 20 Jun 2022
  • Revised: 05 Aug 2022
  • Accepted: 29 Aug 2022
  • Available online: 14 Sep 2022


Abdou, T. R., Espinosa, D. C. R., & Tenório, J. A. S. (2016). Recovering of Carbon Fiber Present in an Industrial Polymeric Composite Waste through Pyrolysis Method while Studying the Influence of Resin Impregnation Process: Prepreg. In R. E. Kirchain, B. Blanpain, C. Meskers, E. Olivetti, D. Apelian, J. Howarter, A. Kvithyld, B. Mishra, N. R. Neelameggham, & J. Spangenberger (Eds.), REWAS 2016 (pp. 313–318). Springer International Publishing.
DOI 10.1007/978-3-319-48768-7_49

Altmann-Mavaddat, N., Athavale, S., Baumann, M., Bogner, T., Bürbaumer, H., Hirtl, A., Höher, M., Indinger, A., Kalt, G., Knaus, K., Lackner, P., Reidlinger, B., Raimund, W., Schilcher, K., Thenius, G., Tretter, H., Wanjek, M., & Zelalic, A. Klima und Energie: Wissen kompakt. Vienna.

Anderl, M., Zechmeister, A., Geiger, K., Gugele, B., Gössl, M., & Haider, S. (2019). Klimaschutzbericht 2019 (Report / Umweltbundesamt REP-0702). Wien.

Baldauf, M. (2022). Grenzwertbestimmung und Analyse von Aluminium- und Kohlenstoffzuschlägen zu Kathodenmaterial aus Lithium-Ionen-Batterien für die Wertmetallrückgewinnung im pyrometallurgischen Reaktorkonzept InduRed [Master thesis]. Montanuniversitaet Leoben, Leoben

Beheshti, R., Tabeshian, A., & Aune, R. E. (2017). Lithium-Ion Battery Recycling Through Secondary Aluminum Production. In L. Zhang, J. W. Drelich, N. R. Neelameggham, D. P. Guillen, N. Haque, J. Zhu, Z. Sun, T. Wang, J. A. Howarter, F. Tesfaye, S. Ikhmayies, E. Olivetti, & M. W. Kennedy (Eds.), The Minerals, Metals & Materials Series. Energy Technology 2017 (pp. 267–274). Springer International Publishing.
DOI 10.1007/978-3-319-52192-3_26

Biswas, A. K. (1981). Principles of blast furnace ironmaking: Theory and practice. Cootha Publ. House

Elwert, T., & Frank, J. (2020). Auf dem Weg zu einem geschlossenen Stoffkreislauf für Lithium-Ionen-Batterien: Towards a Closed Loop for Lithium-Ion Batteries. In E. Thomé-Kozmiensky, O. Holm, B. Friedrich, & D. Goldmann (Eds.), Recycling und Sekundärrohstoffe (pp. 525–530). Thomé-Kozmiensky Verlag GmbH

European Commission. (2020, December 10). Green Deal: Sustainable batteries for a circular and climate neutral economy [Press release].

Gao, R., & Xu, Z. (2019). Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: Debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin. Journal of Hazardous Materials, 364, 1–10.
DOI 10.1016/j.jhazmat.2018.09.096

Holzer, A. (2019). Pyrometallurgisches Recycling von Aktivmaterial aus der Aufbereitung von Lithium-Ionen-Batterien in einem induktiv beheizten Schüttschichtreaktor [Master Thesis]. Montanuniversitaet Leoben, Leoben

Holzer, A., Windisch-Kern, S., Ponak, C., & Raupenstrauch, H. (2021). A novel pyrometallurgical recycling process for Lithium-Ion-Batteries and its use in recycling LCO and LFP. Metals, 2021(11(1), 149).
DOI 10.3390/met11010149

Huang, B., Pan, Z., Su, X., & An, L. (2018). Recycling of lithium-ion batteries: Recent advances and perspectives. Journal of Power Sources, 399, 274–286.
DOI 10.1016/j.jpowsour.2018.07.116

Kwon, O., & Sohn, I. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process. Resources, Conservation and Recycling, 158, 104809.
DOI 10.1016/j.resconrec.2020.104809

Li, J., Wang, G., & Xu, Z. (2016). Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. Journal of Hazardous Materials, 302, 97–104.
DOI 10.1016/j.jhazmat.2015.09.050

Liu, C., Lin, J., Cao, H., Zhang, Y., & Sun, Z [Zhi] (2019). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 228, 801–813.
DOI 10.1016/j.jclepro.2019.04.304

Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622.
DOI 10.1016/j.jpowsour.2021.229622

Pillot, C. (2019, September 18). The Rechargeable Battery Market and Main Trends 2018-2030. Avicenne Energy. ICM AG. ICBR 2019, Lyon

Ponak, C. (2019). Carbo-thermal reduction of basic oxygen furnace slags with simultaneous removal of phosphorus via the gas phase [Dissertation]. Montanuniversitaet Leoben, Leoben

Sojka, R., Pan, Q., & Billman, L. (September 2020). Comparative study of Lithium-ion battery recycling processes

Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388–403.
DOI 10.1016/j.seppur.2016.08.031

Thielmann, A., Neef, C., Hettesheimer, T., Döscher, H., Wietschel, M., & Tübke, J. (12 / 2017). Energiespeicher-Roadmap: Hochenergie-Batterien 2030+ und Perspektiven zukünftiger Batterietechnologien. Fraunhofer-Institut für System- und Innovationsforschung ISI.

Windisch-Kern, S., Holzer, A., Ponak, C., Hochsteiner, T., & Raupenstrauch, H. (2021). Thermal analysis of lithium ion battery cathode materials for the development of a novel pyrometallurgical recycling approach. Carbon Resources Conversion, 4, 184–189.
DOI 10.1016/j.crcon.2021.04.005

Windisch-Kern, S., Holzer, A., Ponak, C., & Raupenstrauch, H. (2021). Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging with the InduRed Reactor Concept. Processes : Open Access Journal, 9(1), 84.
DOI 10.3390/pr9010084

Windisch-Kern, S., Holzer, A., Wiszniewski, L., & Raupenstrauch, H. (2021). Investigation of Potential Recovery Rates of Nickel, Manganese, Cobalt, and Particularly Lithium from NMC-Type Cathode Materials (LiNixMnyCozO2) by Carbo-Thermal Reduction in an Inductively Heated Carbon Bed Reactor. Metals, 11(11), 1844.
DOI 10.3390/met11111844

Xiao, J., Li, J., & Xu, Z. (2017). Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 51(20), 11960–11966.
DOI 10.1021/acs.est.7b02561

Yin, H., & Xing, P. (2019). Pyrometallurgical Routes for the Recycling of Spent Lithium-Ion Batteries. In L. An (Ed.), Recycling of Spent Lithium-Ion Batteries (pp. 57–83). Springer International Publishing.
DOI 10.1007/978-3-030-31834-5_3