an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Senem Önen Cinar - Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Germany
  • Kerstin Kuchta - Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Germany

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher


The study examines the effect of temperature fluctuations on biogas production efficiency in biogas plants with the aim of evaluating the temperature flexibility of the process. Laboratory scale batch reactors were prepared with the chosen substrate (Dried Distillers Grains with Soluble, DDDS) and the study was conducted in three batches. A biogas formation potential test was implemented in each batch in a temperature-controlled room and in a temperature controlled water bath. The temperature changes took place on the third day of tests to evaluate the effect of 5°C, 10°C and 15°C increases on biogas production efficiency in separate test sets. Batch experiments showed that it is possible to ensure process recovery after 5°C and 10°C increases. Overall, the specific biomethane production was obtained between 364-412 Nml CH4 / g oDM. Unlike 5°C and 10°C increases, after 15°C increase a lower methane content was obtained. These results show that it is possible to have flexible temperature operation in the process, even with high-temperature increases.


Editorial History

  • Received: 15 Jul 2019
  • Revised: 05 Dec 2019
  • Accepted: 21 Jan 2020
  • Available online: 05 Mar 2020


Al Seadi, T., Rutz, D., & Prassl, H. (2008). Biogas handbook

Bisswanger, H. (2008). Enzyme Kinetics: Principles and Methods. Wiley‐VCH Verlag GmbH & Co. KGaA

Caballero-Arzápalo, N. (2015, September 10). Untersuchungen zum anaeroben Abbauprozess ausgewählter Abfallsubstrate mit Hilfe spezieller Mikroorganismen und Enzyme. Münich

Demirel Burak, S. P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to biomethane. Reviews in Environmental Science and Biotechnology, 173-190

DIN. (n.d.). German standard methods for the examination of water, waste water and sludge - Parameters characterizing effects and substances (group H) - Part 7: Determination of acid and base-neutralizing capacities (H 7) , 2005

DIN. (1983). German standard methods for the examination of water, waste water and sludge; cations (group E); determination of ammonia-nitrogen (E 5)

DIN. (1985, 11). German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S); determination of water content, of dry residue and of solids content (S 2)

DIN. (1987). Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Summarische Wirkungs- und Stoffkenngrößen (Gruppe H); Bestimmung des Gesamttrockenrückstandes, des Filtrattrockenrückstandes und des Glührückstandes (H 1)

DIN. (2001). Bestimmung des Glühverlustes der Trocknenmasse, DIN EN 12879 (S 3a) 2001-02, 2001

DIN. (2001). Bestimmung des Trockenrückstandes und des Wassergehalts, DIN EN 12880 (S 2a) 2001-2,2001

DIN. (2019). Water analysis - Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC); German version EN 1484:1997

Dominika Kufka, M. B. (2019). Stable isotopes of C and H in methane fermentation of agriculture substrates at different temperature conditions. Open Geoscinces

Drosg, B. (2013). Process monitoring in biogas plants. IEA Bioenergy

El-Mashad Hamed M., Z. G. (2004). Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresource technology, 191-201

FNR. (2010). Guide to Biogas: From production to use. Rostock: FNR, Abt. Öffentlichkeitsarbeit

FNR. (2013). Biogas. Fachagentur Nachwachsende Rohstoffe e.V. (FNR)

Gerardi, M. H. (2003). The Microbiology of Anaerobic Digestion. Wiley-Interscience

Gerber, M. (2009). Ganzheitliche stoffliche und energetische Modellierung des Biogasbildungsprozesses . Bochum

Iranpour R., C. H. (2002). Changing Mesophilic Wastewater Sludge Digestion into Thermophilic Operation at Terminal Island Treatment Plant. Water and Environment Research, 497-507

ISO. (2002). Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method

J.B. Holm-Nielsen, T. A.-P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, pp. 5478-5484

Jabłoński, S., Rodowicz, P., & Łukaszewicz, M. (2015). Methanogenic archaea database containing physiological and biochemical characteristics. International journal of systematic and evolutionary microbiology , 1360–1368

K. Kundu, I. B. (2014, January 30). Impact of abrupt temperature increase on the performance of an anaerobic hybrid bioreactor and its intrinsic microbial community. Bioresource Technology, pp. 72-79

Kayode Feyisetan Adekunle, J. O. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 205-212

Le Zhang, K.-C. L.-H. (2019, September ). Mesophilic and thermophilic anaerobic digestion of soybean curd residue for methane production: Characterizing bacterial and methanogen communities and their correlations with organic loading rate and operating temperature. Bioresource Technology

Liangwei Deng, H. Y. (2014, August 7). Kinetics of temperature effects and its significance to the heatingstrategy for anaerobic digestion of swine wastewater. Applied Energy, pp. 349-355

Matteo Bavutti, L. G. (2014). Thermal stabilization of digesters of biogas plants by means of optimization of the surface radiative properties of the gasometer domes. 68th Conference of the Italian Thermal Machines Engineering Association, (pp. 1344-1353)

Methodenbuch, D. V. (n.d.). Bestimmung von Gesamt-Stickstoff nach KJELDAHL

Moset Veronica, P. M. (2015). Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial biotechnology

Protigrain, C. A. (2019, May 13). Retrieved from

Rafaela Franqueto, J. D. (2019). Effect of Temperature Variation on Codigestion of Animal Waste and Agricultural Residue for Biogas Production. BioEnergy Research

Streitwieser, D. A. (2017). Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresource Technology, 985-992

Suryawanshi, P. C., Chaudhari, A. B., & Kothari, R. M. (2010). Thermophilic anaerobic digestion. The best option for waste treatment. Critical reviews in biotechnology, 31-40

Teimour Amani, M. N. (2010). Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects - A review. Environmental Reviews

VDI. (2014). Vergärung organischer Stoffe Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche, VDI 4630

Wu Man-chang, S. K. (2006). Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste. . Journal of Zhejiang University, 180-185

Ye Chen, J. J. (2007). Inhibition of anaerobic digestion process: A review. Bioresource Technology, pp. 4044-4064