an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Mario F. Castellón-Zelaya - Environmental Engineering Department, Institute of Engineering, National Autonomous University of Mexico, Mexico
  • Simón González-Martínez - Environmental Engineering Department, Institute of Engineering, National Autonomous University of Mexico, Mexico

Released under CC BY-NC-ND

Copyright: © 2021 CISA Publisher


Organic Fraction of Municipal Solid Waste (OFMSW) is usually stored under variable humidity conditions and long periods before processing them in anaerobic digestion plants. Lately, the fermented OFMSW is mixed with recirculated digestate from the same biogas plants, which is used as methanogenic inoculum. Although both the moisture content during the storage of OFMSW and the inoculum concentration in the feed mixture to the anaerobic reactors are determining factors for the process, to our knowledge, no studies have been done about the combined effect of these operational parameters on methane production. Therefore, this study focused on determining how humidity conditions during OFMSW storage and the substrate to inoculum ratio (S/I) in the methanisation stage can be adjusted to improve methane production. OFMSW was stored at 35°C and 10, 20, and 28%TS for 15 days. In the second stage, methanisation of previously fermented OFMSW was allowed at different S/I ratios of 0.5, 1.0, and 1.5. Ethanol and acetic acid accounted for 90% of all products of fermentation. The lowest solids concentration reached the highest fermentation degree. Compared to fresh OFMSW (without storing), methane from fermented OFMSW increased 32% and, the times to reach the maximum methane production decreased between 11 and 40%. For fermented OFMSW, S/I ratio of 1.0 is the best condition to produce methane. ANOVA shows that, independently of solid concentration during storage, the S/I ratio is the main parameter improving methane production and reducing reaction times.


Editorial History

  • Received: 21 Jan 2021
  • Revised: 19 May 2021
  • Accepted: 24 May 2021
  • Available online: 30 Jun 2021


Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J-P., Steyer, J-P., Escudié R., 2012. Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111, 55–61.
DOI 10.1016/j.biortech.2012.01.174

Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S. and Janssen, R., 2008. Biogas Handbook. University of Southern Denmark. Esbjerg, Denmark

APHA, 2017. Standard methods for the examination of water and wastewater, 23rd edition. American Public Health Association, Washington, D. C

ASTM D5231-92, 2016. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste, ASTM International, West Conshohocken, PA

Bolzonella, D., Fatone, F., Pavan, P., Cecchi, F., 2005. Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind. Eng. Chem. Res. 44 (10), 3412–3418.
DOI 10.1021/ie048937m

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., Muck, R. E., 2018. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 101, 3952-3979.
DOI 10.3168/jds.2017-13837

Browne, J., Murphy, J., 2013. Assessment of the resource associated with biomethane from food waste. Appl. Energy 104, 170–177.
DOI 10.1016/j.apenergy.2012.11.017

Buffière, P., Dooms, M., Hattou, S., Benbelkacem, H. 2018. The hydrolytic stage in high solids temperature phased anaerobic digestion improves the downstream methane production rate. Bioresour. Technol. 259, 111–118.
DOI 10.1016/j.biortech.2018.03.037

Campuzano, R., 2015. Lixiviación de residuos sólidos orgánicos urbanos para incrementar la rapidez de producción de biogás (Leaching of urban organic solid waste to increase the speed of biogas production). Doctoral thesis. National University of Mexico, Mexico City. Available in (in Spanish)

Di Maria, F., Sordi, A., Micale, C., 2012. Optimization of solid anaerobic digestion by inoculum recirculation: The case of an existing Mechanical Biological Treatment plant. Appl. Energy. 97, 462-469.
DOI 10.1016/j.apenergy.2011.12.093

Dogan, E., Dunaev, T., Ergude, T. H., Demirer, G. N., 2009. Performance of leaching bed reactor converting the organic fraction of municipal solid waste to organic acids and alcohols. Chemosphere 74, 797-803.
DOI 10.1016/j.chemosphere.2008.10.028

Dong, L., Zhenhong, Y., Yongming, S., 2010. Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour. Technol. 101, 2722–2728.
DOI 10.1016/j.biortech.2009.12.007

Fantozzi, F., Buratti, C., 2011 Anaerobic digestion of mechanically treated OFMSW: Experimental data on biogas/methane production and resiudes chracterization. Bioresour. Technol. 102, 8885-8892.
DOI 10.1016/j.biortech.2011.06.077

Favaro, L., Alibardi, L., Lavagbolo, M. C., Casella, S., Basaglia, M. 2013. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int. J. Hydrog. Energy. 38, 11774 – 11779.
DOI 10.1016/j.ijhydene.2013.06.137

Fernández, J., Pérez, M., Romero, L. 2008. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresour. Technol. 99, 6075–6080.
DOI 10.1016/j.biortech.2007.12.048

Forster-Carneiro, T., Pérez, M., Romero, L., 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresour. Technol. 99, 6994–7002.
DOI 10.1016/j.biortech.2008.01.018

García-Bernet, D., Buffière, P., Latrille, E., Steyer, J. P., Escudi, R., 2011. Water distribution in biowastes and digestates of dry anaerobic digestion technology. Chem. Eng. J. 172, 924–928.
DOI 10.1016/j.cej.2011.07.003

Gottardo, M., Micolucci, F., Mattioli, A., Faggian, S., Cavinato, C., Pavan, P., 2015. Hydrogen and methane production from biowaste and sewage sludge by two phases anaerobic codigestion. Chem. Eng. Trans. 43, 379–384.
DOI 10.3303/CET1543064

He, M., Sun, Y., Zou, D., Yuan, H., Zhu, B., Li, X., Pang, Y., 2012. Influence of temperature on hydrolysis acidification of food waste. Procedia Environ. Sci. 16, 85–94.
DOI 10.1016/j.proenv.2012.10.012

Henze, M., Van Loosdrecht, M., Ekama, G., Brdjanovi, D., 2008. Biological Wastewater Treatment: Principles, Modeling and Design. IWA Publishing, London

Herrmann, C., Heiermann, M., Idler, C., 2011. Effects of ensiling, silage additives and storage period on mehtane formation of biogas crops. Bioresour. Technol. 102, 5153-5161.
DOI 10.1016/j.biortech.2011.01.012

Holliger, C., Alve, M., Andrade, D. Angelidaki, I., 2016. Toward a standarization of biomethane potential tests. Water Sci. Technol. 74, 2515–2522.
DOI 10.2166/wst.2016.336

Hosseini, E., Azizi, A., Bazyar Lakeh, A. A., Hafez, H., Elbeshbishy, E., 2019. Comparison of liquid and dewatered digestate as inoculum for anaerobic digestion of organic solid wastes. Waste Manage. 87, 228-236.
DOI 10.1016/j.wasman.2019.02.014

Jiang. J., Zhang, Y., Li, K., Wang, Q., Gong, C., Li, M. 2013. Volatile fatty acids production from food waste: Effects of pH, temperature, and organic loading rate. Bioresour. Technol. 143, 525–530.
DOI 10.1016/j.biortech.2013.06.025

Kalač, P., 2012. The required characteristics of ensiled crops used as a feedstock for biogas production: a review. J. Agrobiol. 28, 85–96.
DOI 10.2478/v10146-011-0010-y

Karthikeyan, O. P., Visvanathan, C., 2013. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Reviews in Environ. Sci. Biotechnol. 12 (3), 257–284.
DOI 10.1007/S11157-012-9304-9

Le Hyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudié, R., Buffière, P., 2012. Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresour. Technol. 102, 822–827.
DOI 10.1016/j.biortech.2010.08.124

Liu, D., Liu, D., Zeng, R., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res. 40, 2230–2236.
DOI 10.1016/j.watres.2011.11.047

Liu, H., Wang, J., Liu, X., Fu, B., Chen, J., Yu, H-Q., 2012. Acidogenic fermentation of proteinaceous sewage sludge: Effect of pH. Water Res. 46, 799–807.
DOI 10.1016/j.watres.2006.03.029

Lü, F., Xu, X., Shao, L., He, P., 2016. Importance of storage time in mesophilic anaerobic digestion of food waste. J. Environ. Sci. 45, 76-83.
DOI 10.1016/j.jes.2015.11.019

Moretto, G., Valentino, F., Pava, P., Majone, M., Bolzonella, D., 2019. Optimization of urban waste fermentation for volatile fatty acids production. Waste Manage. 92, 21–29.
DOI 10.1016/j.wasman.2019.05.010

Motte, J.-C., Escudié, R., Bernet, N., Delgenes, J.-P., Steyer, J.-P., Dumas, C., 2013. Dynamic affect od total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresour. Technol. 144, 141-148.
DOI 10.1016/j.biortech.2013.06.057

Nilsson, S., Hellman, E., Moestedt, J., 2018. The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste. Waste Manage. 71, 636-643
DOI 10.1016/j.wasman.2017.05.034

Nizami, A. S., Korres, N. E., Murphy, J. D., 2009. Review of the integrated process for the production of grass biomethane. Environ. Sci. Technol. 43, 8496–8508.
DOI 10.1021/es901533j

Pakarinen, A., Maijala, P., Jaakkola, S., Stoddard, F., Kymäläinen, M., Viikari, L., 2011. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops. Biotechnol. Biofuels 2011, 4:20.
DOI 10.1186/1754-6834-4-20

Pipyn, P., Verstraete, W., 1981. Lactate and ethanol as intermediates in two-phase anaerobic digestion. Biotechnol. Bioeng. 23, 1145-1154.
DOI 10.1002/bit.260230521

Qian, M. Y., Li, R. H., Li, J., Wedwitschka, H., Nelles, M., Stinner, W., Zhou, H. J., 2016. Industrial scale garage-type dry fermentation of muicipal solid waste to biogas, Bioresour. Technol. 217, 82-89.
DOI 10.1016/j.biortech.2016.02.076

Saveyn, H., Eder, P., 2014. End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical Proposals. JRC Scientific and Policy Reports, Sevilla. Available in:

Schievano, A., Pognani, M., D´Imporzano, G., Adani, F., 2008. Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour. Technol. 99, 8112–8117.
DOI 10.1016/j.biortech.2008.03.030

Schievano, A., Tenca, A., Lonati, S., Manzini, E. Adani, F., 2014. Can two-stages instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 124, 335-342.
DOI 10.1016/j.apenergy.2014.03.024

Schink, B., Zeikus, J. G., 1980. Microbial methanol formation: A major end product of pectin metabolism. Curr. Microbiol. 4, 387-389.
DOI 10.1186/s40064-016-3303-1

Silva, F. C., Serafim, L. S., Nadais, H., Arroja, L., Capela. I., 2013. Acidogenic fermentation towards valorisation of organic waste streams into voiatile fatty acids. Chem. Biochem. Eng. 27, 467–476. Available in:

Stürmer, B., 2017. Feedstock change at biogas plants – Impact on production costs. Biomass Bioenergy. 98, 228-235.
DOI 10.1016/j.biombioe.2017.01.032

Sun, H., Wu, Sh., Dong, R., 2016. Monitoring Volatile Fatty Acids and Carbonate Alkalinity in Anaerobic Digestion: Titration Methodologies. Chem. Eng. Technol. 34 (4) 599-610.
DOI 10.1002/ceat.201500293

Voelklein, M. A., Jacob, A., O’ Shea, R., Murphy, J. D., 2016. Assessment of increasing loading rate on two-stage digestion of food waste. Bioresour. Technol. 202, 172–180.
DOI 10.1016/j.biortech.2015.12.001

Wang, G., 2010. Biogas production from energy crops and agriculture residues. Doctoral Thesis. Technical University of Denmark, Roskilde. Available in: (in English)

Wang, K., Yin, J., Shen, D., Li, N., 2014. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresour. Technol. 161, 395–401.
DOI 10.1016/j.biortech.2014.03.088

Warnecke, T., Gill, R. T., 2005. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4, 1-8.
DOI 10.1186/1475-2859-4-25

Worrell, A., Aarne, P., 2011. Solid Waste Engineering, second ed. CENGAGE Learning, Stamford

Wu, C., Wang, Q., Yu, M., Zhang, X., Song, N., Chang, Q., Gao, M. Sonomoto, K., 2015. Effect of ethanol pre-fermentation and inoculum-to-substrate ratio on methane yield from food waste and distillers' grains. Appl. Energy 155, 846–853.
DOI 10.1016/j.apenergy.2015.04.081

Xu, S., Karthikeyan, P., Selvam, A., Wong, J., 2012. Effect of inoculum to substrate ratio on the hydrolysis and acidification of food waste in leach bed reactor. Bioresour. Technol. 126, 425–430.
DOI 10.1016/j.biortech.2011.12.059

Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025–2029.
DOI 10.1021/es052252b

Zeotemeyer, R. J., Arnoldy, P., Cohen, A., Boelhouwer, C., 1982. Influence of temperature on the anaerobic acidification of glucose in a mixed culture forming part of a two-stage digestion process. Water Res. 16, 313-321.
DOI 10.1016/0043-1354(82)90191-9

Zhao, N., Yu, M., Wang, Q., Song, N., Che, S., Wu, C., Sun, X., 2016. Effect of ethanol and lactic acid pre-fermentation of putrefactive bacteria suppression, hydrolysis, and methanogenesis of food waste. Energy Fuels 30, 2982–2989.
DOI 10.1021/acs.energyfuels.5b02779

Zhou, M., Yan, B., Wong, J., Zhang, Y., 2018. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 248, 68-78.
DOI 10.1016/j.biortech.2017.06.121