Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
Biomeiler Foundation: https://www.biomeiler.at/ (last access: May 2021)
Native Power: https://native-power.de/ (last access: May 2021)
Albertí, J., Raigosa, J., Raugei, M., Assiego, R., Ribas-Tur, J., Garrido-Soriano, N., Zhang, L., Song, G., Hernández, P., Fullana-i-Palmer, P., 2019. Life Cycle Assessment of a solar thermal system in Spain, eco-design alternatives and derived climate change scenarios at Spanish and Chinese National levels. Sustain. Cities Soc. 47, 101467.
DOI 10.1016/j.scs.2019.101467
Bayer, P., Rybach, L., Blum, P., Brauchler, R., 2013. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 26, 446–463.
DOI 10.1016/j.rser.2013.05.039
Bird, N., Cowie, A., Cherubini, F., Jungmeier, G., 2006. Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy. IEA Bioenergy 30, I–VII.
DOI 10.1016/s0961-9534(06)00180-2
Butti, L., 2020. Circular economy, methane emissions, waste management, and the courts’ role. Detritus 13, 1–2.
DOI 10.31025/2611-4135/2020.14034
Comodi, G., Bevilacqua, M., Caresana, F., Paciarotti, C., Pelagalli, L., Venella, P., 2016. Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Appl. Energy 164, 944–955.
DOI 10.1016/j.apenergy.2015.08.036
Dahmen, N., Lewandowski, I., Zibek, S., Weidtmann, A., 2019. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 11, 107–117.
DOI 10.1111/gcbb.12586
Di Maria, F., Benavoli, M., Zoppitelli, M., 2008. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction. Waste Manag. 28, 805–812.
DOI 10.1016/j.wasman.2007.03.021
Di Maria, F., Mastrantonio, M., Uccelli, R., 2021. The life cycle approach for assessing the impact of municipal solid waste incineration on the environment and on human health. Sci. Total Environ. 776.
DOI 10.1016/j.scitotenv.2021.145785
Frick, S., Kaltschmitt, M., Schröder, G., 2010. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 35, 2281–2294.
DOI 10.1016/j.energy.2010.02.016
Frischknecht, R., Jungbluth, N., Althaus, H., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., Spielmann, M., Wernet, G., 2007. Overview and Methodology. ecoinvent Cent. 1–77
Hermann, B.G., Debeer, L., De Wilde, B., Blok, K., Patel, M.K., 2011. To compost or not to compost: Carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96, 1159–1171.
DOI 10.1016/j.polymdegradstab.2010.12.026
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R., 2003. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8, 324–330.
DOI 10.5479/si.00963801.32-1531.411
Karlsdottir, M.R., Lew, J.B., Palsson, Palsson, 2014. Geothermal District Heating System in Iceland: A Life Cycle Perspective with Focus on Primary Energy Efficiency and CO2 Emissions. 14th Int. Symp. Dist. Heat. Cool
Lacirignola, M., Blanc, I., 2013. Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment. Renew. Energy 50, 901–914.
DOI 10.1016/j.renene.2012.08.005
Lazarevic, D., Buclet, N., Brandt, N., 2012. The application of life cycle thinking in the context of European waste policy. J. Clean. Prod. 29–30, 199–207.
DOI 10.1016/j.jclepro.2012.01.030
Li, A., Feng, M., Li, Y., Liu, Z., 2016. Application of Outlier Mining in Insider Identification Based on Boxplot Method. Procedia Comput. Sci. 91, 245–251.
DOI 10.1016/j.procs.2016.07.069
Lord, R., Sakrabani, R., 2019. Ten-year legacy of organic carbon in non-agricultural (brownfield) soils restored using green waste compost exceeds 4 per mille per annum: Benefits and trade-offs of a circular economy approach. Sci. Total Environ. 686, 1057–1068.
DOI 10.1016/j.scitotenv.2019.05.174
Malesani, R., Pivato, A., Bocchi, S., Lavagnolo, M.C., Muraro, S., Schievano, A., 2021a. Compost Heat Recovery Systems : An alternative to produce renewable heat and promoting ecosystem services. Environ. Challenges 4, 100131.
DOI 10.1016/j.envc.2021.100131
Malesani, R., Schievano, A., Bocchi, S., Pivato, A., 2021b. Compost heat recovery systems – a tool to promote renewable energy and agro-ecological practices. Detritus 14.
DOI 10.31025/2611-4135/2021.14081
Martinopoulos, G., Tsilingiridis, G., Kyriakis, N., 2013. Identification of the environmental impact from the use of different materials in domestic solar hot water systems. Appl. Energy 102, 545–555.
DOI 10.1016/j.apenergy.2012.08.035
Mazumder, P., PM, A., Jyoti, Khwairakpam, M., Mishra, U., Kalamdhad, A.S., 2021. Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. J. Environ. Manage. 289, 112461.
DOI 10.1016/j.jenvman.2021.112461
Pain, J., Pain, I., 1972. The Methods of Jean Pain - Another kind of garden, 7th ed. Ancienne Imprimerie NEGRO, Draguignan, 83300
Pratiwi, A., Ravier, G., Genter, A., 2018. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 75, 26–39.
DOI 10.1016/j.geothermics.2018.03.012
Pratiwi, A., Trutnevyte, E., 2020. Review of Life Cycle Assessments of Geothermal Heating Systems. World Geotherm. Congr. 2020 submitted for publication
Pratiwi, A.S., Trutnevyte, E., 2021. Life cycle assessment of shallow to medium-depth geothermal heating and cooling networks in the State of Geneva. Geothermics 90, 101988.
DOI 10.1016/j.geothermics.2020.101988
Rosenfeld, D.C., Lindorfer, J., Böhm, H., Zauner, A., Fazeni-Fraisl, K., 2021. Potentials and costs of various renewable gases: A case study for the Austrian energy system by 2050. Detritus 16, 106–120.
DOI 10.31025/2611-4135/2021.15121
Smith, M.M., Aber, J.D., 2017. Heat Recovery From Composting: a step-by-step guide to building an aerated static pile heat recovery composting facility
Tamburini, E., Costa, S., Summa, D., Battistella, L., Fano, E.A., Castaldelli, G., 2021. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles – What is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196.
DOI 10.1016/j.envres.2021.110974
Themelis, N.J., Kim, Y.H., 2002. Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag. Res. 20, 234–242.
DOI 10.1177/0734242X0202000304
VanderWilde, C.P., Newell, J.P., 2021. Ecosystem services and life cycle assessment: A bibliometric review. Resour. Conserv. Recycl. 169, 105461.
DOI 10.1016/j.resconrec.2021.105461
Weidema, B.P., Wesnæs, M.S., 1996. Data quality management for life cycle inventories-an example of using data quality indicators. J. Clean. Prod. 4, 167–174.
DOI 10.1016/S0959-6526(96)00043-1
Patricia Battais, Francis Bonthoux, Sullivan Lechêne, Jennifer Klingler, Jérôme Grosjean, Nathalie Monta and Juliette Kunz-Iffli
Published 30 Jun 2022Kiranmani Janga, Begum Sameena and Gangagni Rao Anupoju
Published 30 Jun 2022Mahsa Doostdar, Annachiara Ceraso, Janus zum Brock, Ariana Carolina Morales Rapallo and Kerstin Kuchta
Published 30 Jun 2022Title | Support | Price |
---|