an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

COMPOST HEAT RECOVERY SYSTEMS: GLOBAL WARMING POTENTIAL IMPACT ESTIMATION AND COMPARISON THROUGH A LIFE CYCLE ASSESSMENT APPROACH

  • Rachele Malesani - DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
  • Andrea Schievano - Department of Environmental Science and Policy, University of Milan, Italy
  • Francesco Di Maria - Department of Engineering, University of Perugia, Italy
  • Federico Sisani - Department of Engineering, University of Perugia, Italy
  • Alberto Pivato - DICEA, Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy

Released under CC BY-NC-ND

Copyright: © 2022 CISA Publisher


Abstract

Compost Heat Recovery Systems (CHRS) represent an innovative technology to provide domestic decentralized thermal energy, recovering the heat naturally produced during the aerobic biodegradation of waste biomass, coming from gardening/farming/forestry activities. CHRSs represent an alternative to centralized grid-connected power systems and are usually installed (combined with most traditional systems) to power underfloor heating systems (UHS) or domestic hot water systems (DHWS), lowering impacts and costs of thermal energy production. In this study, the Global Warming Potential (GWP) of CHRSs (measured as kgCO2-eq/kWh) was investigated using life cycle assessment (LCA) approach, considering the whole life cycle of an average plant. CHRSs showed a negative Net value of GWP impact, equal to -0.268 kgCO2-eq/kWh, as full balance of positive (0.062 kgCO2-eq/kWh) and negative (-0.329 kgCO2-eq/kWh) emissions. Negative emissions are related to avoided primary materials, replacement of natural gas used as traditional thermal energy production and replacement of mineral fertilizers. Considering only the positive emissions (0.062 kgCO2-eq/kWh), CHRSs emerged to be in line with Solar Hot-Water Systems (0.061 kgCO2-eq/kWh mean value) and slightly higher than Geothermal Systems (0.019 kgCO2-eq/kWh mean value). Along with GWP impact, other midpoint and endpoint impact indicators were assessed and all showed a negative Net value: Particulate Matter PM (-2.36E-5 kgPM2.5-eq/kWh), Fresh Water eutrophication FWE (-6.78E-06 kgP-eq/kWh), Fresh Water ecotoxicity FWec (-2.10E-01 CTUe/kWh), Human Toxicity cancer effect HTc (-5.68E-09 CTUh/kWh), Human Toxicity non-cancer effect HTnc (-3.51E-09 CTUh/kWh) and Human Health HH (-5.22E-08 DALY/kWh). These results demonstrate that CHRS is extremely convenient considering both environmental and human health consequences.

Keywords


Editorial History

  • Received: 08 Feb 2022
  • Revised: 23 May 2022
  • Accepted: 08 Jun 2022
  • Available online: 30 Jun 2022

References

Biomeiler Foundation: https://www.biomeiler.at/ (last access: May 2021)

Native Power: https://native-power.de/ (last access: May 2021)

Albertí, J., Raigosa, J., Raugei, M., Assiego, R., Ribas-Tur, J., Garrido-Soriano, N., Zhang, L., Song, G., Hernández, P., Fullana-i-Palmer, P., 2019. Life Cycle Assessment of a solar thermal system in Spain, eco-design alternatives and derived climate change scenarios at Spanish and Chinese National levels. Sustain. Cities Soc. 47, 101467.
DOI 10.1016/j.scs.2019.101467

Bayer, P., Rybach, L., Blum, P., Brauchler, R., 2013. Review on life cycle environmental effects of geothermal power generation. Renew. Sustain. Energy Rev. 26, 446–463.
DOI 10.1016/j.rser.2013.05.039

Bird, N., Cowie, A., Cherubini, F., Jungmeier, G., 2006. Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse Gas Emissions of Bioenergy. IEA Bioenergy 30, I–VII.
DOI 10.1016/s0961-9534(06)00180-2

Butti, L., 2020. Circular economy, methane emissions, waste management, and the courts’ role. Detritus 13, 1–2.
DOI 10.31025/2611-4135/2020.14034

Comodi, G., Bevilacqua, M., Caresana, F., Paciarotti, C., Pelagalli, L., Venella, P., 2016. Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Appl. Energy 164, 944–955.
DOI 10.1016/j.apenergy.2015.08.036

Dahmen, N., Lewandowski, I., Zibek, S., Weidtmann, A., 2019. Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. GCB Bioenergy 11, 107–117.
DOI 10.1111/gcbb.12586

Di Maria, F., Benavoli, M., Zoppitelli, M., 2008. Thermodynamic analysis of the energy recovery from the aerobic bioconversion of solid urban waste organic fraction. Waste Manag. 28, 805–812.
DOI 10.1016/j.wasman.2007.03.021

Di Maria, F., Mastrantonio, M., Uccelli, R., 2021. The life cycle approach for assessing the impact of municipal solid waste incineration on the environment and on human health. Sci. Total Environ. 776.
DOI 10.1016/j.scitotenv.2021.145785

Frick, S., Kaltschmitt, M., Schröder, G., 2010. Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 35, 2281–2294.
DOI 10.1016/j.energy.2010.02.016

Frischknecht, R., Jungbluth, N., Althaus, H., Doka, G., Dones, R., Heck, T., Hellweg, S., Hischier, R., Nemecek, T., Rebitzer, G., Spielmann, M., Wernet, G., 2007. Overview and Methodology. ecoinvent Cent. 1–77

Hermann, B.G., Debeer, L., De Wilde, B., Blok, K., Patel, M.K., 2011. To compost or not to compost: Carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96, 1159–1171.
DOI 10.1016/j.polymdegradstab.2010.12.026

Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R., 2003. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8, 324–330.
DOI 10.5479/si.00963801.32-1531.411

Karlsdottir, M.R., Lew, J.B., Palsson, Palsson, 2014. Geothermal District Heating System in Iceland: A Life Cycle Perspective with Focus on Primary Energy Efficiency and CO2 Emissions. 14th Int. Symp. Dist. Heat. Cool

Lacirignola, M., Blanc, I., 2013. Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment. Renew. Energy 50, 901–914.
DOI 10.1016/j.renene.2012.08.005

Lazarevic, D., Buclet, N., Brandt, N., 2012. The application of life cycle thinking in the context of European waste policy. J. Clean. Prod. 29–30, 199–207.
DOI 10.1016/j.jclepro.2012.01.030

Li, A., Feng, M., Li, Y., Liu, Z., 2016. Application of Outlier Mining in Insider Identification Based on Boxplot Method. Procedia Comput. Sci. 91, 245–251.
DOI 10.1016/j.procs.2016.07.069

Lord, R., Sakrabani, R., 2019. Ten-year legacy of organic carbon in non-agricultural (brownfield) soils restored using green waste compost exceeds 4 per mille per annum: Benefits and trade-offs of a circular economy approach. Sci. Total Environ. 686, 1057–1068.
DOI 10.1016/j.scitotenv.2019.05.174

Malesani, R., Pivato, A., Bocchi, S., Lavagnolo, M.C., Muraro, S., Schievano, A., 2021a. Compost Heat Recovery Systems : An alternative to produce renewable heat and promoting ecosystem services. Environ. Challenges 4, 100131.
DOI 10.1016/j.envc.2021.100131

Malesani, R., Schievano, A., Bocchi, S., Pivato, A., 2021b. Compost heat recovery systems – a tool to promote renewable energy and agro-ecological practices. Detritus 14.
DOI 10.31025/2611-4135/2021.14081

Martinopoulos, G., Tsilingiridis, G., Kyriakis, N., 2013. Identification of the environmental impact from the use of different materials in domestic solar hot water systems. Appl. Energy 102, 545–555.
DOI 10.1016/j.apenergy.2012.08.035

Mazumder, P., PM, A., Jyoti, Khwairakpam, M., Mishra, U., Kalamdhad, A.S., 2021. Enhancement of soil physico-chemical properties post compost application: Optimization using Response Surface Methodology comprehending Central Composite Design. J. Environ. Manage. 289, 112461.
DOI 10.1016/j.jenvman.2021.112461

Pain, J., Pain, I., 1972. The Methods of Jean Pain - Another kind of garden, 7th ed. Ancienne Imprimerie NEGRO, Draguignan, 83300

Pratiwi, A., Ravier, G., Genter, A., 2018. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 75, 26–39.
DOI 10.1016/j.geothermics.2018.03.012

Pratiwi, A., Trutnevyte, E., 2020. Review of Life Cycle Assessments of Geothermal Heating Systems. World Geotherm. Congr. 2020 submitted for publication

Pratiwi, A.S., Trutnevyte, E., 2021. Life cycle assessment of shallow to medium-depth geothermal heating and cooling networks in the State of Geneva. Geothermics 90, 101988.
DOI 10.1016/j.geothermics.2020.101988

Rosenfeld, D.C., Lindorfer, J., Böhm, H., Zauner, A., Fazeni-Fraisl, K., 2021. Potentials and costs of various renewable gases: A case study for the Austrian energy system by 2050. Detritus 16, 106–120.
DOI 10.31025/2611-4135/2021.15121

Smith, M.M., Aber, J.D., 2017. Heat Recovery From Composting: a step-by-step guide to building an aerated static pile heat recovery composting facility

Tamburini, E., Costa, S., Summa, D., Battistella, L., Fano, E.A., Castaldelli, G., 2021. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles – What is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196.
DOI 10.1016/j.envres.2021.110974

Themelis, N.J., Kim, Y.H., 2002. Material and energy balances in a large-scale aerobic bioconversion cell. Waste Manag. Res. 20, 234–242.
DOI 10.1177/0734242X0202000304

VanderWilde, C.P., Newell, J.P., 2021. Ecosystem services and life cycle assessment: A bibliometric review. Resour. Conserv. Recycl. 169, 105461.
DOI 10.1016/j.resconrec.2021.105461

Weidema, B.P., Wesnæs, M.S., 1996. Data quality management for life cycle inventories-an example of using data quality indicators. J. Clean. Prod. 4, 167–174.
DOI 10.1016/S0959-6526(96)00043-1