an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU
Full Lenght Research Article


  • Juan C. Hernández Parrodi - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria - NEW-MNE project, Renewi Belgium SA/NV, Belgium
  • Daniel Höllen - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria
  • Roland Pomberger - Department of Environmental and Energy Process Engineering, Montanuniversität Leoben, Austria

DOI 10.31025/2611-4135/2018.13663

Released under CC BY-NC-ND

Copyright: © 2018 Cisa Publisher

Editorial History

  • Received: 07 Feb 2018
  • Revised: 04 Apr 2018
  • Accepted: 11 Jun 2018
  • Available online: 30 Jun 2018


Several landfill mining (LFM) studies have been carried out in recent years all around the world. From these studies qualitative and quantitative information regarding the composition and characteristics of the different fractions excavated from landfills has been obtained. This information comprises data from various landfill sites around the globe from which useful correlations for future LFM projects can be identified. Of particular interest to this paper is the information regarding the fine fractions, which represent to this day a crucial obstacle in the implementation of LFM and enhanced landfill mining (ELFM). The fine fractions make up a considerable portion of the total amount of waste disposed of in landfills. Depending on the particle size chosen as upper limit to define the fines fraction, the portion of this fraction can be as high as 40-80 wt.% of the total excavated waste. These fractions consist of decomposed organic substances, e.g. humic substances, partly weathered mineral waste, e.g. sand, brick fragments, concrete, but also of fine metal particles, especially non-ferrous metals, and still a significant amount of plastics, paper and other calorific fractions. However, although calorific fractions might be used for energy recovery and inorganic fractions for material (especially metal) recovery, current LFM studies are discarding the fine fraction due to lacking or too expensive processing routes. Therefore, it is of critical interest to LFM and ELFM projects to reduce the particle size down to which the excavated material can be processed. This paper, which was elaborated within the framework of the EU Training Network for Resource Recovery through Enhanced Landfill Mining – NEW-MINE, aims to review the obtained data from different LFM studies from municipal solid waste (MSW) landfills, concerning the fines fraction, in order to identify key aspects to be taken into consideration while designing the processing approach in future LFM and ELFM investigations.



Attal, A., Akunna, J., Camacho, P., Salmon, P., & Paris, I. (1992). Anaerobic degradation of municipal wastes in landfill. Water Science and Technology, 25(7), 243–253.

Ayuso, M., Hernández, T., García, C., & Pascual, J. A. (1996). A Comparative Study of the Effect on Barley Growth of Humic Substances Extracted from Municipal Wastes and from Traditional Organic Materials. Journal of the Science of Food and Agriculture, 72(4), 493–500.
DOI 10.1002/(SICI)1097-0010(199612)72:4<493::AID-JSFA687>3.0.CO;2-4

Baccini, P., Henseler, G., Figi, R., & Belevi, H. (1987). Water and element balances of municipal solid waste landfills. Waste Management & Research, 5(4), 483–499. Retrieved from

Baky, A., & Eriksson, O. (2003). Systems analysis of organic waste management in Denmark.

Bäumler, R., & Kögel-Knabner, I. (2008). Spectroscopic and wet chemical characterization of solid waste organic matter of different age in landfill sites, Southern Germany. Journal of environmental quality, 37(1), 146–153.

Belevi, H., & Baccini, P. (1989). Long-term behavior of municipal solid waste landfills. Waste Management & Research, 7(1), 43–56.
DOI 10.1016/0734-242X(89)90007-4

Bhatnagar, A., Kaczala, F., Burlakovs, J., Kriipsalu, M., Hogland, M., & Hogland, W. (2017). Hunting for valuables from landfills and assessing their market opportunities: A case study with Kudjape landfill in Estonia. Waste Management & Research, 17, 0734242X1769781.
DOI 10.1177/0734242X17697816

Bockreis, A., & Knapp, J. (2011). Landfill Mining – Deponien als Rohstoffquelle. Österreichische Wasser- und Abfallwirtschaft, 63(3-4), 70–75.
DOI 10.1007/s00506-010-0275-1

Bookter, T. J., & Ham, R. K. (1982). Stabilization of solid waste in landfills. J. Environ. Eng. Div.(Am. Soc. Civ. Eng.);(United States), 108.

Bozkurt, S., Moreno, L., & Neretnieks, I. (1999). Long-term fate of organics in waste deposits and its effect on metal release. Science of The Total Environment, 228(2-3), 135–152.
DOI 10.1016/S0048-9697(99)00047-9

Bradl, H. (2005). Heavy metals in the environment: Origin, interaction and remediation (Vol. 6): Academic Press.

Burlakovs, J., Kriipsalu, M., Arina, D., Kaczala, F., Ozola, R., Denafas, G.,. . . Hogland, W. (2016). Metals and rare Earth´s elements in landfills: case studies. Proceedings of the Third International Academic Symposium on Enhanced Landfill Mining. 8 - 10 February, 2016. Lisbon, Portugal.

Burlakovs, J., Kaczala, F., Vincevica-Gaile, Z., Rudovica, V., Orupõld, K., Stapkevica, M.,. . . Hogland, W. (2016). Mobility of Metals and Valorization of Sorted Fine Fraction of Waste After Landfill Excavation. Waste and Biomass Valorization, 7(3), 593–602.
DOI 10.1007/s12649-016-9478-4

Chen, D., Guan, Z., Liu, G., Zhou, G., & Zhu, T. (2010). Recycling combustibles from aged municipal solid wastes (MSW) to improve fresh MSW incineration in Shanghai: Investigation of necessity and feasibility. Frontiers of Environmental Science & Engineering in China, 4(2), 235–243.
DOI 10.1007/s11783-010-0016-5

Cossu, R., Motzo, G. M., & Laudadio, M. (1995). Preliminary study for a landfill mining project in Sardinia. Proceedings Sardinia 1995. Fifth International Waste Management and Landfill Symposium. Oct. 1995. S. Margherita di Pula, Cagliari, Italy, 841-850.

Cossu, R., & Lai, T. (2012). Washing of waste prior to landfilling. Waste Management, 32(5), 869–878.
DOI 10.1016/j.wasman.2011.12.005

Das, K. C., Smith, M. C., Gattie, D. K., & Hale Boothe, D. D. (2002). Stability and quality of municipal solid waste compost from a landfill aerobic bioreduction process. Advances in Environmental Research, 6(4), 401–409.
DOI 10.1016/S1093-0191(01)00066-1

Esakku, S., Palanivelu, K., & Joseph, K. (2003). Assessment of heavy metals in a municipal solid waste dumpsite. In Workshop on Sustainable Landfill Management (Vol. 35, pp. 139–145).

Finnveden, G. (1996). Solid waste treatment within the framework of life cycle assessment. The International Journal of Life Cycle Assessment, 1(2), 74–78.
DOI 10.1007/BF02978649

Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of hazardous materials, 137(2), 1008–1015.
DOI 10.1016/j.jhazmat.2006.03.026

Gould, J. P., Cross, W. H., & Pohland, F. G. (1990). Factors Influencing Mobility of Toxic Metals in Landfills Operated with Leachate Recycle. In D. W. Tedder & F. G. Pohland (Eds.), ACS symposium series, 0097-6156: Vol. 422. Emerging technologies in hazardous waste management (Vol. 422, pp. 267–291). Washington, D.C.: American Chemical Society.
DOI 10.1021/bk-1990-0422.ch016

Graedel, T. E., Allwood, J., Birat, J.-P., Buchert, M., Hagelüken, C., Reck, B. K.,. . . Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology, 15(3), 355–366.

Gurijala, K. R., & Suflita, J. M. (1993). Environmental factors influencing methanogenesis from refuse in landfill samples. Environmental Science & Technology, 27(6), 1176–1181.
DOI 10.1021/es00043a018

Gutiérrez-Gutiérrez, S. C., Coulon, F., Jiang, Y., & Wagland, S. (2015). Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities. Waste Management, 42, 128–136.
DOI 10.1016/j.wasman.2015.04.024

Ham, R. K., Norman, M. R., & Fritschel, P. R. (1993). Chemical Characterization of Fresh Kills Landfill Refuse and Extracts. Journal of Environmental Engineering, 119(6), 1176–1195.
DOI 10.1061/(ASCE)0733-9372(1993)119:6(1176)

He, P.-J., Xiao, Z., Shao, L.-M., Yu, J.-Y., & Lee, D.-J. (2006). In situ distributions and characteristics of heavy metals in full-scale landfill layers. Journal of hazardous materials, 137(3), 1385–1394.
DOI 10.1016/j.jhazmat.2006.04.033

Hislop, H. (2011). Reinventing the wheel: A circular economy for resource security: Green Alliance.

Hogland, W. (2002). Remediation of an Old Landsfill Site: Soil Analysis, Leachate Quality and Gas Production. Environmental Science and Pollution Research, 9(S1), 49–54.
DOI 10.1007/BF02987426

Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: A strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6(2).
DOI 10.1007/s10163-003-0110-x

Hull, R. M., Krogmann, U., & Strom, P. F. (2005). Composition and Characteristics of Excavated Materials from a New Jersey Landfill. Journal of Environmental Engineering, 131(3), 478–490.
DOI 10.1061/(ASCE)0733-9372(2005)131:3(478)

Iglesias Jimenez, E., & Perez Garcia, V. (1992). Relationships between organic carbon and total organic matter in municipal solid wastes and city refuse composts. Bioresource Technology, 41(3), 265–272.
DOI 10.1016/0960-8524(92)90012-M

Jain, P., Kim, H., & Townsend, T. G. (2005). Heavy metal content in soil reclaimed from a municipal solid waste landfill. Waste Management, 25(1), 25–35.
DOI 10.1016/j.wasman.2004.08.009

Jani, Y., Marchand, C., & Hogland, W. (2014). The Potentional of Plants to Cleanup Metals from an Old Landfill Site. Linnaeus ECO-TECH ´14. Kalmar, Sweden. 24-26 November 2014.

Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., & Kihl, A. (2016). Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Management & Research, 34(12), 1292–1299.
DOI 10.1177/0734242X16670000

Jones, K. L., Rees, J. F., & Grainger, J. M. (1983). Methane generation and microbial activity in a domestic refuse landfill site. European Journal of Applied Microbiology and Biotechnology, 18(4), 242–245.
DOI 10.1007/BF00501516

Jones, P. T., Geysen, D., Rossy, A., & Bienge, K. (2010). Enhanced Landfill Mining (ELFM) and Enhanced Waste Management (EWM): essential components for the transition to Sustainable Materials Management (SMM). Proceedings of the First International Academic Symposium on Enhanced Landfill Mining. 4 - 6 October, 2010. Houthalen-Helchteren, Belgium.

Kaartinen, T., Sormunen, K., & Rintala, J. (2013). Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. Journal of Cleaner Production, 55, 56–66.
DOI 10.1016/j.jclepro.2013.02.036

Kaczala, F., Mehdinejad, M. H., Lääne, A., Orupõld, K., Bhatnagar, A., Kriipsalu, M., & Hogland, W. (2017). Leaching characteristics of the fine fraction from an excavated landfill: Physico-chemical characterization. Journal of Material Cycles and Waste Management, 19(1), 294–304.
DOI 10.1007/s10163-015-0418-3

Kelly, R. J. (2002). Solid waste biodegradation enhancements and the evaluation of analytical methods used to predict waste stability. Ph.D. Thesis: Environmental Science and Engineering, Faculty of Virginia Polytechnic Institute and State University.

Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical reviews in environmental science and technology, 32(4), 297–336.

Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: A critical review of two decades of research. Waste Management, 32(3), 513–520.
DOI 10.1016/j.wasman.2011.10.015

Kurian, J., Esakku, S., Palanivelu, K., & Selvam, A. (2003). Studies on landfill mining at solid waste dumpsites in India. Proceedings Sardinia 2003. Ninth International Waste Management and Landfill Symposium. 6 - 10 Oct. 2003. S. Margherita di Pula, Cagliari, Italy, 3, 248–255.

Lehmann, B. (2014). Economic geology of rare-earth elements in 2014: A global perspective. European Geologist, 37, 21–24.

Liebetegger, W. (2015). Landfill Mining - Charakterisierung der Fein- und heizwertreichen Fraktion (Masterarbeit). Montanuniversität Leoben, Leoben, Austria.

Martensson, A. M., Aulin, C., Wahlberg, O., & Agren, S. (1999). Effect of humic substances on the mobility of toxic metals in a mature landfill. Waste Management and Research, 17(4), 296–304.
DOI 10.1034/j.1399-3070.1999.00053.x

Masi, S., Caniani, D., Grieco, E., Lioi, D. S., & Mancini, I. M. (2014). Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Management, 34(3), 702–710.
DOI 10.1016/j.wasman.2013.12.013

Maul, A., & Pretz, T. (2016). Landfill Mining from the processing perspective - a view on mass balance and output streams. Proceedings of the Third International Academic Symposium on Enhanced Landfill Mining. 8 - 10 February, 2016. Lisbon, Portugal.

Mehta, R., Barlaz, M. A., Yazdani, R., Augenstein, D., Bryars, M., & Sinderson, L. (2002). Refuse Decomposition in the Presence and Absence of Leachate Recirculation. Journal of Environmental Engineering, 128(3), 228–236.
DOI 10.1061/(ASCE)0733-9372(2002)128:3(228)

Miller, W. L., Earle, J. F., & Townsend, T. G. (1996). Engineering Control and Augmentation of Biological Decomposition at the Solid Waste Landfills. Project Summary. Department of Environmental Engineering and Sciences, University of Florida Gainesville FL, USA.

Mönkäre, T. J., Palmroth, M. R. T., & Rintala, J. A. (2016). Characterization of fine fraction mined from two Finnish landfills. Waste Management, 47(Pt A), 34–39.
DOI 10.1016/j.wasman.2015.02.034

Morf, L. S., Gloor, R., Haag, O., Haupt, M., Skutan, S., Di Lorenzo, F., & Böni, D. (2013). Precious metals and rare earth elements in municipal solid waste - Sources and fate in a Swiss incineration plant. Waste Management, 33(3), 634–644.
DOI 10.1016/j.wasman.2012.09.010

Münnich, K., Fricke, K., Wanka, S., & Zeiner, A. (2013). Landfill Mining: A contribution to conservation of natural resources? Proceedings Sardinia 2013. Fourteenth International Waste Management and Landfill Symposium. 30 Sep. - 4 Oct. 2013. S. Margherita di Pula, Cagliari, Italy.

Øygard, J. K., Måge, A., & Gjengedal, E. (2004). Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate. Water research, 38(12), 2851–2858.
DOI 10.1016/j.watres.2004.03.036

Parker, T., Dottridge, J., & Kelly, S. (2002). Investigation of the composition and emissions of trace components in landfill gas: R&D Technical Report P1-438/TR. Bristol, UK: Environment Agency.

Prechthai, T., Padmasri, M., & Visvanathan, C. (2008). Quality assessment of mined MSW from an open dumpsite for recycling potential. Resources, Conservation and Recycling, 53(1-2), 70–78.
DOI 10.1016/j.resconrec.2008.09.002

Qian, X., Koerner, R. M., & Gray, D. H. (2002). Geotechnical aspects of landfill design and construction. p. Prentice Hall, 710.

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83.
DOI 10.1016/j.jclepro.2012.06.012

Reinhart, D. R. (1993). A review of recent studies on the sources of hazardous compounds emitted from solid waste landfills: A U.S. experience. Waste Management & Research, 11(3), 257–268.

Reinhart, D. R., & Basel Al-Yousfi, A. (1996). The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Management & Research, 14(4), 337–346.

Rettenberger, G. (2009). Zukünftige Nutzung der Deponie als Resourcenquelle. Tagungsband der 11. Münsteraner Abfallwirtschaftstage. 10 - 11 February, 2009. Münster, Germany.

Riber, C., Petersen, C., & Christensen, T. H. (2009). Chemical composition of material fractions in Danish household waste. Waste Management, 29(4), 1251–1257.
DOI 10.1016/j.wasman.2008.09.013

Ross, D., Harries, C., Revans, A., Cross, C., & NATHANIEL, P. (2000). Long term fate of metals in landfill: a combined experimental and modelling study.

Rotter, V. S., Kost, T., Winkler, J., & Bilitewski, B. (2004). Material flow analysis of RDF-production processes. Waste Management, 24(10), 1005–1021.
DOI 10.1016/j.wasman.2004.07.015

Savage, G. M., Golueke, C. G., & Von Stein, E. L. (1993). Landfill mining: past and present. BioCycle (USA).

Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. The Science of the total environment, 337(1-3), 119–137.
DOI 10.1016/j.scitotenv.2004.07.002

Sormunen, K., Laurila, T., & Rintala, J. (2013). Determination of waste decay rate for a large Finnish landfill by calibrating methane generation models on the basis of methane recovery and emissions. Waste Management & Research, 31(10), 979–985.
DOI 10.1177/0734242X13490980

Spooren, J., Nielsen, P., Quaghebeur, M., & Tielemans, Y. (2012). Characterisation study of landfilled materials with a particular focus on the fines and their potential in enhanced landfill mining. 18th greening of industry network conference (GIN2012). Linköping University. 22 - 24 October, 2012. Linköping, Sweden. Retrieved from

Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions: John Wiley & Sons.

Tabasaran, O., & Rettenberger, G. (1987). Grundlagen zur Planung von Entgasungsanlagen, Handbuch Müll und Abfall, Kennz. 4547, Lieferung 1/87, E: Schmidt Verlag.

Townsend, T. G., Miller, W. L., Lee, H.-J., & Earle, J. F. (1996). Acceleration of landfill stabilization using leachate recycle. Journal of Environmental Engineering, 122(4), 263–268.

Landfill Reclamation, US EPA July 1997.

Van Vossen, W. J., & Prent, O. J. (2011). Feasibility study: Sustainable material and energy recovery from landfills in Europe. Proceedings Sardinia 2011. Thirteenth International Waste Management and Landfill Symposium. 3 - 7 Oct. 2011. S. Margherita di Pula, Cagliari, Italy, 247–248.

Van Vossen, W. J., & Prent, O. J. (2013). Feasibility study: Sustainable material and energy recovery from landfills in Europe. ISTANBUL 3W CONGRESS 2013. Istanbul International Solid Waste, Water and Wastewater Congress. 22 - 24 May, 2013. Istanbul, Turkey.

Wang, Y.-S., Byrd, C. S., & Barlaz, M. A. (1994). Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology, 13(3), 147–153.
DOI 10.1007/BF01583999

Wiemer, K., Bartsch, B., & Schmeisky, H. (2009). Deponien als Rohstofflagerstätten von morgen‐Ergebnisse einer hessenweiten Untersuchung. Bio-und Sekundärrohstoffverwertung IV, Witzenhausen-Institut für Abfall Umwelt und Energie GmbH, Witzenhausen, 685–716.

Wolfsberger, T., Aldrian, A., Sarc, R., Hermann, R., Höllen, D., Budischowsky, A.,. . . Pomberger, R. (2015). Landfill mining: Resource potential of Austrian landfills - Evaluation and quality assessment of recovered municipal solid waste by chemical analyses. Waste Management & Research, 33(11), 962–974.
DOI 10.1177/0734242X15600051

Zhao, Y., Song, L., Huang, R., Song, L., & Li, X. (2007). Recycling of aged refuse from a closed landfill. Waste Management & Research, 25(2), 130–138.
DOI 10.1177/0734242X07074053

Zornberg, J. G., Jernigan, B. L., Sanglerat, T. R., & Cooley, B. H. (1999). Retention of Free Liquids in Landfills Undergoing Vertical Expansion. Journal of Geotechnical and Geoenvironmental Engineering, 125(7), 583–594.
DOI 10.1061/(ASCE)1090-0241(1999)125:7(583)