an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

LANDFILL MINING IN THE FRAMEWORK OF INTEGRATED WASTE MANAGEMENT: CASE STUDY OF AN ITALIAN LANDFILL

  • Paula Tan - Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy
  • Roberto Raga - Department of Civil, Environmental and Architectural Engineering, University of Padova, Italy
  • Enrico Villani - Ecoambiente srl, Italy
  • Walter Giacetti - Ecoambiente srl, Italy

Access restricted to subscribed members only

Released under All rights reserved

Copyright: © 2024 CISA Publisher


Abstract

A remediation project involving landfill mining (LFM) was designed and is ongoing at the 40-year-old Villadose landfill in Rovigo, Italy. The original natural clay lining the bottom of the old landfill is being recovered and used as technical material. Meanwhile newly constructed landfill sectors, designed to contained more than four times more waste than previously are being filled with both excavated waste and fresh municipal solid waste. A laboratory scale experiment was conducted to simulate the expected landfill conditions and analyse the effects of different waste fractions on emissions. The fresh municipal waste although pretreated at a mechanical biological treatment plant shows a significant residual emission potential, in terms of TOC, and NH4. A landfill housing such quality of waste would not be expected to have achieved final storage quality by the end of its aftercare life. The joint disposal of this waste fraction and the substantially degraded excavated waste may contribute to shortening this timeline. This paper reports the landfill mining operation, an assessment of the emissions from the landfill simulation reactors and the implications for the expected landfill behaviour.

Keywords


Editorial History

  • Received: 12 Apr 2024
  • Revised: 15 Jul 2024
  • Accepted: 26 Jul 2024
  • Available online: 02 Sep 2024

References

Ahmadifar, M., Sartaj, M., & Abdallah, M. (2016). Investigating the performance of aerobic, semi-aerobic, and anaerobic bioreactor landfills for MSW management in developing countries. Journal of Material Cycles and Waste Management, 18(4), 703–714.
DOI 10.1007/s10163-015-0372-0

Back, S., Fior, F., Ingrosso, M., & Vendrame, G. (2000). ã 2000 CISA, Centro di Ingegneria Sanitaria Ambientale XL. APPLICAZIONE DEL LANDFILL MINING IN UNA DISCARICA ESAURITA PER RIFIUTI URBANI

Brandstätter, C., Laner, D., & Fellner, J. (2015). Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Waste Management, 40, 100–111.
DOI 10.1016/j.wasman.2015.03.011

Cossu. (2016). Back to Earth Sites: From “nasty and unsightly” landfilling to final sink and geological repository. Waste Management, 55, 1–2.
DOI 10.1016/j.wasman.2016.07.028

Cossu, R., Sciunnach, D., Cappa, S., Gallina, G., Grossule, V., & Raga, R. (2020). First worldwide regulation on sustainable landfilling: Guidelines of the Lombardy region (Italy). Detritus, 12, 114–124.
DOI 10.31025/2611-4135/2020.14001

Elagroudy, S. A., Abdel-Razik, M. H., Abd El-Azeem, M. M., Ghobrial, F. H., & Warith, M. A. (2009). Effect of Waste Composition and Load Application on the Biodegradation of Municipal Solid Waste in Bioreactor Landfills. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 13(3), 165–173.
DOI 10.1061/(ASCE)1090-025X(2009)13:3(165)

Erses, A. S., & Onay, T. T. (2003). Accelerated landfill waste decomposition by external leachate recirculation from an old landfill cell. http://iwaponline.com/wst/article-pdf/47/12/215/422313/215.pdf

Fadel, M. El, Fayad, W., & Hashisho, J. (2013). Enhanced solid waste stabilization in aerobic landfills using low aeration rates and high density compaction. Waste Management and Research, 31(1), 30–40.
DOI 10.1177/0734242X12457118

Gioannis, G. De, Muntoni, A., Cappai, G., & Milia, S. (2009). Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants. Waste Management, 29(3), 1026–1034.
DOI 10.1016/j.wasman.2008.08.016

Grossule, V., Morello, L., Cossu, R., & Lavagnolo, M. C. (2018). Bioreactor landfills: Comparison and kinetics of the different systems. Detritus, 3(September), 100–113.
DOI 10.31025/2611-4135/2018.13703

Hogland, W., Marques, M., & Nimmermark, S. (2004). Landfill mining and waste characterization: a strategy for remediation of contaminated areas. Journal of Material Cycles and Waste Management, 6(2).
DOI 10.1007/s10163-003-0110-x

Hrad, M., Gamperling, O., & Huber-Humer, M. (2013). Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. Waste Management, 33(10), 2061–2073.
DOI 10.1016/j.wasman.2013.01.027

Huo, S.-L., Xi, B.-D., Yu, H.-C., Fan, S.-L., Jing, S., & Liu, H.-L. (2008). A laboratory simulation of in situ leachate treatment in semi-aerobic bioreactor landfill. http://www.wrc.org.za

Jones, P. T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., & Hoekstra, N. (2013). Enhanced Landfill Mining in view of multiple resource recovery: A critical review. In Journal of Cleaner Production (Vol. 55, pp. 45–55).
DOI 10.1016/j.jclepro.2012.05.021

Krook, J., Svensson, N., & Eklund, M. (2012). Landfill mining: A critical review of two decades of research. Waste Management, 32(3), 513–520.
DOI 10.1016/j.wasman.2011.10.015

Lavagnolo, M. C., Grossule, V., & Raga, R. (2018). Innovative dual-step management of semi-aerobic landfill in a tropical climate. Waste Management, 74, 302–311.
DOI 10.1016/j.wasman.2018.01.017

López, C. G., Küppers, B., Clausen, A., & Pretz, T. (2018). Landfill mining: A case study regarding sampling, processing and characterization of excavated waste from an Austrian landfill. Detritus, 2(June), 29–45.
DOI 10.31025/2611-4135/2018.13664

Mankhair, R. V., & Chandel, M. K. (2024). Investigating the characteristics of combustible fraction of legacy waste: A study on energy recovery potential and GHG emission quantification. Environmental Research, 251.
DOI 10.1016/j.envres.2024.118669

Mankhair, R. V., Singh, A., & Chandel, M. K. (2024). Characterization of excavated plastic waste from an Indian dumpsite: Investigating extent of degradation and resource recovery potential. Waste Management and Research.
DOI 10.1177/0734242X231219654

Morello, L., Raga, R., Lavagnolo, M. C., Pivato, A., Ali, M., Yue, D., & Cossu, R. (2017). The S.An.A.® concept: Semi-aerobic, Anaerobic, Aerated bioreactor landfill. Waste Management, 67, 193–202.
DOI 10.1016/j.wasman.2017.05.006

Nag, M., Shimaoka, T., & Komiya, T. (2016). Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic–anaerobic landfill method. Waste Management, 55, 71–82.
DOI 10.1016/j.wasman.2015.10.018

Parida, D., Ramana, G. V., & Datta, M. (2024). Investigation on trommeled legacy waste from full-scale mining of old dumpsites: Suitable for valorization or scientific disposal? Journal of Environmental Management, 356.
DOI 10.1016/j.jenvman.2024.120580

Parrodi, J. C. H., López, C. G., Küppers, B., Raulf, K., Vollprecht, D., Pretz, T., & Pomberger, R. (2019). Case study on enhanced landfill mining at mont-saintguibert landfill in Belgium: Characterization and potential of fine fractions. Detritus, 8(December), 47–61.
DOI 10.31025/2611-4135/2019.13877

Parrodi, J. C. H., Raulf, K., Vollprecht, D., Pretz, T., & Pomberger, R. (2019). Case study on enhanced landfill mining at mont-saint-guibert landfill in Belgium: Mechanical processing of fine fractions for material and energy recovery. Detritus, 8(December), 62–78.
DOI 10.31025/2611-4135/2019.13878

Phyu, Z. Y., Phongphiphat, A., Muttaraid, A., Wangyao, K., & Towprayoon, S. (2024). Flows of plastic, energy, and carbon in a mechanical treatment plant for refuse-derived fuel production from landfill-mined waste. Journal of Cleaner Production, 452.
DOI 10.1016/j.jclepro.2024.142065

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83.
DOI 10.1016/j.jclepro.2012.06.012

Rada, E., Ragazzi, M., Stefani, P., Schiavon, M., & Torretta, V. (2015). Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation. Sustainability, 7(1), 482–495.
DOI 10.3390/su7010482

Raga, R., & Cossu, R. (2013). Bioreactor tests preliminary to landfill in situ aeration: A case study. Waste Management, 33(4), 871–880.
DOI 10.1016/j.wasman.2012.11.014

Raga, R., Cossu, R., Heerenklage, J., Pivato, A., & Ritzkowski, M. (2015). Landfill aeration for emission control before and during landfill mining. Waste Management, 46, 420–429.
DOI 10.1016/j.wasman.2015.09.037

Saravanan, G., & Dhinagaran, G. (2023). Optimization of trommel screen performance in municipal solid waste landfill mining and legacy waste characterization. Clean - Soil, Air, Water, 51(9).
DOI 10.1002/clen.202200190

Savage, G. M., Clarence G, G., & E. L, von S. (1993). Landfill Mining: Past and Present. Biocycle 34

Siddiqui, A. A., Richards, D. J., & Powrie, W. (2013). Biodegradation and flushing of MBT wastes. Waste Management, 33(11), 2257–2266.
DOI 10.1016/j.wasman.2013.07.024

Somani, M., Datta, M., Ramana, G. V., & Sreekrishnan, T. R. (2018). Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: Case study of three dumpsites from India. Waste Management and Research, 36(8), 744–755.
DOI 10.1177/0734242X18782393

Tao, J., Liu, Y., Kumar, A., Chen, G., Sun, Y., Li, J., Guo, W., Cheng, Z., & Yan, B. (2024). Effect of landfilling time on physico-chemical properties of combustible fractions in excavated waste. Science of the Total Environment, 917.
DOI 10.1016/j.scitotenv.2024.170371

Vollprecht, D., Parrodi, J. C. H., Lucas, H., & Pomberger, R. (2020). Case study on enhanced landfill mining at mont-saintguibert landfill in belgium: Mechanical processing, physico-chemical and mineralogical characterisation of fine fractions <4.5 mm. Detritus, 10(June), 26–43.
DOI 10.31025/2611-4135/2020.13940

Warith, M. A., & Takata, G. J. (2004). Effect of Aeration on Fresh and Aged Municipal Solid Waste in a Simulated Landfill Bioreactor. In Water Qual. Res. J. Canada (Vol. 39, Issue 3). http://iwaponline.com/wqrj/article-pdf/39/3/223/230325/wqrjc0390223.pdf

Wu, C., Shimaoka, T., Nakayama, H., Komiya, T., & Chai, X. (2016). Stimulation of waste decomposition in an old landfill by air injection. Bioresource Technology, 222, 66–74.
DOI 10.1016/j.biortech.2016.09.078

Xochitl, Q.-P., María del Consuelo, H.-B., María del Consuelo, M.-S., Rosa María, E.-V., & Alethia, V.-M. (2021). Degradation of Plastics in Simulated Landfill Conditions. Polymers, 13(7), 1014.
DOI 10.3390/polym13071014

Youcai, Z., Hua, L., Jun, W., & Guowei, G. (2002). Treatment of Leachate by Aged-Refuse-based Biofilter.
DOI 10.1061/ASCE0733-93722002128:7662