an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Mohammed Zari - Faculty of Engineering, Chemical and Environmental Engineering Department, University of Nottingham, United Kingdom of Great Britain and Northern Ireland - Faculty of Environmental Sciences, Department of Environment, King Abdulaziz University, Saudi Arabia
  • Richard Smith - Faculty of Engineering, Chemical and Environmental Engineering Department, University of Nottingham, United Kingdom of Great Britain and Northern Ireland - Industrial Chemicals Ltd, United Kingdom of Great Britain and Northern Ireland
  • Rebecca Ferrari - Faculty of Engineering, Chemical and Environmental Engineering Department, University of Nottingham, United Kingdom of Great Britain and Northern Ireland

Access restricted to subscribed members only

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Mining operations are one of the most significant sources of particulate emissions in the atmosphere. Landfill mining (LFM) process activities, including excavation, screening, shredding, and equipment handling, have the potential to emit particulate matter into the environment as short-term episodic emissions during operational periods. Previous investigations show that LFM activities can potentially cause human health and environmental impacts through exposure of these emissions. This paper evaluates the dust emission rate of such activities to understand factors responsible for higher emissions rate and determine where any pressure points exist in order to mitigate risk. Nine empirical formulas were adopted from surface mining activities, including point, line, and area sources of activity. Parameters identified in the equations were adjusted to LFM application conditions. From emission results, it is observed that point source activities were the major sources of emission. The study area was divided into multiple phases and one phase cumulative for the maximum/average/minimum point sources emissions over the lifetime of the landfill mining operation calculated in this study are approximately 5.04 tonnes (t) / 3.23 (t) / 1.61 (t), respectively. However, the one phase cumulative for the maximum/average/minimum line sources emissions over the lifetime of the landfill mining operation are approximately 100.8 (kg/m) / 40.32 (kg/m) / 20.16 (kg/m), respectively. Mitigation measures to control high emission rate of LFM related activity, such as utilising tankers or bowsers to spray water around the LFM area, to control airborne emissions, should be considered. The results of this research are expected to inform air dispersion modelling for environmental impact assessment studies of air pollution.


Editorial History

  • Received: 12 Jul 2023
  • Revised: 24 Nov 2023
  • Accepted: 13 Dec 2023
  • Available online: 31 Dec 2023


Abril, G. A., Diez, S. C., Pignata, M. L., & Britch, J. (2016). Particulate matter concentrations originating from industrial and urban sources: validation of atmospheric dispersion modeling results. Atmospheric Pollution Research, 7, (1), 180-189.
DOI 10.1016/j.apr.2015.08.009

Adenuga, A. A., Amos, O. D., Olajide, O. D., Eludoyin, A. O., & Idowu, O. O. (2022). Environmental impact and health risk assessment of potentially toxic metals emanating from different anthropogenic activities related to E-wastes. Heliyon, 8, (8), e10296.
DOI 10.1016/j.heliyon.2022.e10296

Araújo, I. P., Costa, D. B., & De Moraes, R. J. (2014). Identification and characterization of particulate matter concentrations at construction jobsites. Sustainability, 6, (11), 7666-7688.
DOI 10.3390/su6117666

Chakraborty, M., Ahmad, M., Singh, R., Pal, D., Bandopadhyay, C., & Chaulya, S. (2002). Determination of the emission rate from various opencast mining operations. Environmental Modelling & Software, 17, (5), 467-480.
DOI 10.1016/S1364-8152(02)00010-5

Chaulya, S. (2006). Emission rate formulae for surface iron ore mining activities. Environmental Modeling & Assessment, 11, (4), 361-370.
DOI 10.1007/s10666-005-9026-2

Chaulya, S., Ahmad, M., Singh, R., Bandopadhyay, L. K., Bondyopadhay, C., & Mondal, G. (2003). Validation of two air quality models for Indian mining conditions. Environmental Monitoring and Assessment, 82, (1), 23-43.
DOI 10.1023/A:1021680506462

Chaulya, S., Tiwary, R., Mondal, S., Mondal, G., Singh, T., Singh, S., Singh, R., & Singh, K. (2022). Air quality impact assessment and management of mining activities around an international heritage site in India. Mining, Metallurgy & Exploration, 39, (2), 573-590.
DOI 10.1007/s42461-022-00547-7

Chaulya, S., Trivedi, R., Kumar, A., Tiwary, R., Singh, R., Pandey, P., & Kumar, R. (2019). Air quality modelling for prediction of dust concentrations in iron ore mines of Saranda region, Jharkhand, India. Atmospheric Pollution Research, 10, (3), 675-688.
DOI 10.1016/j.apr.2018.11.005

Cristaldi, A., Fiore, M., Conti, G. O., Pulvirenti, E., Favara, C., Grasso, A., Copat, C., & Ferrante, M. (2022). Possible association between PM2. 5 and neurodegenerative diseases: A systematic review. Environmental Research, 208, 112581.
DOI 10.1016/j.envres.2021.112581

Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., & Sáez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58-73.
DOI 10.1016/j.scitotenv.2012.06.013

Dino, G. A., Mehta, N., Rossetti, P., Ajmone-Marsan, F., & De Luca, D. A. (2018). Sustainable approach towards extractive waste management: two case studies from Italy. Resources Policy, 59, 33-43.
DOI 10.1016/j.resourpol.2018.07.009

Elmes, M., & Gasparon, M. (2017). Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: a review. Journal of Environmental Management, 202, 137-150.
DOI 10.1016/j.jenvman.2017.06.067

Entwistle, J. A., Hursthouse, A. S., Reis, P. A. M., & Stewart, A. G. (2019). Metalliferous mine dust: human health impacts and the potential determinants of disease in mining communities. Current Pollution Reports, 5, (3), 67-83.
DOI 10.1007/s40726-019-00108-5

Fang, J., Zhang, L., Rao, S., Zhang, M., Zhao, K., & Fu, W. (2022). Spatial variation of heavy metals and their ecological risk and health risks to local residents in a typical e-waste dismantling area of southeastern China. Environmental Monitoring and Assessment, 194, (9), 1-18.
DOI 10.1007/s10661-022-10296-1

Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of hazardous materials, 137, (2), 1008-1015.
DOI 10.1016/j.jhazmat.2006.03.026

Frank, R., Cipullo, S., Garcia, J., Davies, S., Wagland, S. T., Villa, R., Trois, C., & Coulon, F. (2017). Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK. Waste Management, 63, 11-17.
DOI 10.1016/j.wasman.2016.08.026

Gao, P., Lei, T., Jia, L., Song, Y., Lin, N., Du, Y., Feng, Y., Zhang, Z., & Cui, F. (2017). Exposure and health risk assessment of PM2. 5-bound trace metals during winter in university campus in Northeast China. Science of the Total Environment, 576, 628-636.
DOI 10.1016/j.scitotenv.2016.10.126

Ghose, M., & Majee, S. (2000). Assessment of the impact on the air environment due to opencast coal mining—an Indian case study. Atmospheric Environment, 34, (17), 2791-2796.
DOI 10.1016/S1352-2310(99)00302-7

Guo, G., Zhang, D., & Wang, Y. (2021). Characteristics of heavy metals in size-fractionated atmospheric particulate matters and associated health risk assessment based on the respiratory deposition. Environmental Geochemistry and Health, 43, (1), 285-299.
DOI 10.1007/s10653-020-00706-z

Hogland, M., Hogland, W., Jani, Y., Kaczala, F., de Sá Salomão, A. L., Kriipsalu, M., Orupõld, K., & Burlakovs, J. (2014). Experiences of three landfill mining projects in the baltic sea area: with focus on machinery for material recovery. Linnaeus Eco-Tech.
DOI 10.15626/Eco-Tech.2014.014

Holnicki, P., & Nahorski, Z. (2015). Emission data uncertainty in urban air quality modeling - case study. Environmental Modeling & Assessment, 20, (6), 583-597.
DOI 10.1007/s10666-015-9445-7

Hölzle, I. (2017). Contaminants in landfill soils–Reliability of prefeasibility studies. Waste Management, 63, 337-344.
DOI 10.1016/j.wasman.2016.08.024

Houessionon, M. K., Ouendo, E.-M. D., Bouland, C., Takyi, S. A., Kedote, N. M., Fayomi, B., Fobil, J. N., & Basu, N. (2021). Environmental heavy metal contamination from Electronic Waste (e-waste) recycling activities worldwide: A systematic review from 2005 to 2017. International Journal of Environmental Research and Public Health, 18, (7), 3517.
DOI 10.3390/ijerph18073517

Huertas, J., Huertas, M., Cervantes, G., & Díaz, J. (2014). Assessment of the natural sources of particulate matter on the opencast mines air quality. Science of the Total Environment, 493, 1047-1055.
DOI 10.1016/j.scitotenv.2014.05.111

Huertas, J. I., Camacho, D. A., & Huertas, M. E. (2012). Standardized emissions inventory methodology for open-pit mining areas. Environmental Science and Pollution Research, 19, (7), 2784-2794.
DOI 10.1007/s11356-012-0778-3

Jain, P., Townsend, T. G., & Johnson, P. (2013). Case study of landfill reclamation at a Florida landfill site. Waste Management, 33, (1), 109-116.
DOI 10.1016/j.wasman.2012.09.011

Jani, Y., Kaczala, F., Marchand, C., Hogland, M., Kriipsalu, M., Hogland, W., & Kihl, A. (2016). Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Waste Management & Research, 34, (12), 1292-1299.
DOI 10.1177/0734242X16670000

Joseph, G., Lowndes, I., & Hargreaves, D. (2018). A computational study of particulate emissions from Old Moor Quarry, UK. Journal of Wind Engineering and Industrial Aerodynamics, 172, 68-84.
DOI 10.1016/j.jweia.2017.10.018

Kim, H., Tae, S., & Yang, J. (2020). Calculation methods of emission factors and emissions of fugitive particulate matter in south Korean construction sites. Sustainability, 12, (23), 9802.
DOI 10.3390/su12239802

Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment international, 74, 136-143.
DOI 10.1016/j.envint.2014.10.005

Lal, B., & Tripathy, S. S. (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research, 3, (2), 211-218.
DOI 10.5094/APR.2012.023

Lilic, N., Cvjetic, A., Knezevic, D., Milisavljevic, V., & Pantelic, U. (2018). Dust and noise environmental impact assessment and control in Serbian mining practice. Minerals, 8, (2), 34.
DOI 10.3390/min8020034

Liu, P., Wu, Q., Hu, W., Tian, K., Huang, B., & Zhao, Y. (2023). Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: Evidence from field monitoring and Pb isotope analysis. Environmental Pollution, 121740.
DOI 10.1016/j.envpol.2023.121740

López, C. G., Küppers, B., Clausen, A., & Pretz, T. (2018). Landfill mining: a case study regarding sampling, processing and characterization of excavated waste from an Austrian landfill. Detritus, 2, 29-45.
DOI 10.31025/2611-4135/2018.13664

Lopez, C. G., Ni, A., Parrodi, J. H., Küppers, B., Raulf, K., & Pretz, T. (2019). Characterization of landfill mining material after ballistic separation to evaluate material and energy recovery potential. Detritus, 8, (1), 5-23.
DOI 10.31025/2611-4135/2019.13780

Lucas, H. I., García López, C., Hernández Parrodi, J., Vollprecht, D., Raulf, K., Pomberger, R., Pretz, T., & Friedrich, B. (2019). Quality assessment of nonferrous metals recovered by means of landfill mining: A case study in Belgium. Detritus, 8, 79-90.
DOI 10.31025/2611-4135/2019.13879

Luo, H., Zhou, W., Jiskani, I. M., & Wang, Z. (2021). Analyzing characteristics of particulate matter pollution in open-pit coal mines: Implications for Green Mining. Energies, 14, (9), 2680.
DOI 10.3390/en14092680

Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Frontiers in Public Health, 8, 14.
DOI 10.3389/fpubh.2020.00014

Masi, S., Caniani, D., Grieco, E., Lioi, D., & Mancini, I. (2014). Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Management, 34, (3), 702-710.
DOI 10.1016/j.wasman.2013.12.013

Mönkäre, T. J., Palmroth, M. R., & Rintala, J. A. (2016). Characterization of fine fraction mined from two Finnish landfills. Waste Management, 47, 34-39.
DOI 10.1016/j.wasman.2015.02.034

Neshuku, M. N. (2012). Comparison of AERMOD and ADMS for the modeling of particulate dispersion from opencast mining. University of Pretoria.

Ni, Z.-z., Luo, K., Zhang, J.-x., Feng, R., Zheng, H.-x., Zhu, H.-r., Wang, J.-f., Fan, J.-r., Gao, X., & Cen, K.-f. (2018). Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015. Environmental Pollution, 236, 550-561.
DOI 10.1016/j.envpol.2018.01.069

Omrani, M., Ruban, V., Ruban, G., & Lamprea, K. (2017). Assessment of atmospheric trace metal deposition in urban environments using direct and indirect measurement methodology and contributions from wet and dry depositions. Atmospheric Environment, 168, 101-111.
DOI 10.1016/j.atmosenv.2017.08.064

Onder, M., & Yigit, E. (2009). Assessment of respirable dust exposures in an opencast coal mine. Environmental Monitoring and Assessment, 152, (1), 393-401.
DOI 10.1007/s10661-008-0324-4

Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research, 5, (1), 79-86.
DOI 10.5094/APR.2014.010

Parrodi, J. C. H., Höllen, D., & Pomberger, R. (2018). Characterization of fine fractions from landfill mining: a review of previous investigations. Detritus, 6, 4.0.
DOI 10.31025/2611-4135/2018.13663

Parrodi, J. C. H., López, C. G., Küppers, B., Raulf, K., Vollprecht, D., Pretz, T., & Pomberger, R. (2019). Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: Characterization and potential of fine fractions. Detritus, 8, 47-61.
DOI 10.31025/2611-4135/2019.13877

Parrodi, J. C. H., Vollprecht, D., & Pomberger, R. (2020). Case study on enhanced landfill mining at Mont-Saint-Guibert landfill in Belgium: physico-chemical characterization and valorization potential of combustibles and inert fractions recovered from fine fractions. Detritus, 10, 44-61.
DOI 10.31025/2611-4135/2020.13941

Patra, A. K., Gautam, S., & Kumar, P. (2016). Emissions and human health impact of particulate matter from surface mining operation—a review. Environmental Technology & Innovation, 5, 233-249.
DOI 10.1016/j.eti.2016.04.002

Pimolthai, P., & Wagner, J.-F. (2014). Soil mechanical properties of MBT waste from Luxembourg, Germany and Thailand. Songklanakarin J Sci Technol, 36, (6), 701-709.

Prechthai, T., Padmasri, M., & Visvanathan, C. (2008). Quality assessment of mined MSW from an open dumpsite for recycling potential. Resources, Conservation and Recycling, 53, (1-2), 70-78.
DOI 10.1016/j.resconrec.2008.09.002

Richardson, C., Rutherford, S., & Agranovski, I. (2019). Particulate emission rates for open surfaces in Australian open cut black coal mines. Journal of Environmental Management, 232, 537-544.
DOI 10.1016/j.jenvman.2018.11.020

Ronowijoyo, T. A., Budiharjo, M. A., & Sumiyati, S. (2020). Analysis of ambient air quality conditions of tsp parameters and its source in Temon district. E3S Web of Conferences,

Sahu, S. P., Patra, A. K., & Kolluru, S. S. R. (2018). Spatial and temporal variation of respirable particles around a surface coal mine in India. Atmospheric Pollution Research, 9, (4), 662-679.
DOI 10.1016/j.apr.2018.01.010

Scott, D. I., Longman, M., & Wilson, S. (2019). Reclaiming historic landfill sites for residential development: A UK case study. Journal of Environmental Engineering and Science, 15, (2), 71-79.
DOI 10.1680/jenes.19.00022

Singh, A., & Chandel, M. K. (2022). Mobility and environmental fate of heavy metals in fine fraction of dumped legacy waste: Implications on reclamation and ecological risk. Journal of Environmental Management, 304, 114206.
DOI 10.1016/j.jenvman.2021.114206

Dino, G. A., Rossetti, P., Biglia, G., Coulon, F., Gomes, D., Wagland, S., ... & Pizza, A. (2016). SMART GROUND Project: SMART data collection and inteGRation platform to enhance availability and accessibility of data and infOrmation in the EU territory on SecoNDary Raw Materials. Energy Procedia, 97, 15-22.
DOI 10.1016/j.egypro.2016.10.010

Somani, M., Datta, M., Ramana, G., & Sreekrishnan, T. (2018). Investigations on fine fraction of aged municipal solid waste recovered through landfill mining: case study of three dumpsites from India. Waste Management & Research, 36, (8), 744-755.
DOI 10.1177/0734242X18782393

Srivastava, A., Kumar, A., & Elumalai, S. P. (2021). Evaluating dispersion modeling of inhalable particulates (pm 10) emissions in complex terrain of coal mines. Environmental Modeling & Assessment, 26, (3), 385-403.
DOI 10.1007/s10666-021-09762-w

Triantafyllou, A., Kapageridis, I., Gkaras, S., & Pavloudakis, F. (2021). Development of emission factor equations for surface mining activities: the case of the stacker. Materials Proceedings, 5, (1), 15.
DOI 10.3390/materproc2021005015

Wang, W., Chen, C., Liu, D., Wang, M., Han, Q., Zhang, X., Feng, X., Sun, A., Mao, P., & Xiong, Q. (2022). Health risk assessment of PM2. 5 heavy metals in county units of northern China based on Monte Carlo simulation and APCS-MLR. Science of the Total Environment, 156777.
DOI 10.1016/j.scitotenv.2022.156777

Wang, Y.-n., Xu, R., Kai, Y., Wang, H., Sun, Y., Zhan, M., & Gong, B. (2021). Evaluating the physicochemical properties of refuse with a short-term landfill age and odorous pollutants emission during landfill mining: a case study. Waste Management, 121, 77-86.
DOI 10.1016/j.wasman.2020.12.001

Wang, Z., Zhou, W., Jiskani, I. M., Ding, X., & Luo, H. (2022). Dust pollution in cold region Surface Mines and its prevention and control. Environmental Pollution, 292, 118293.
DOI 10.1016/j.envpol.2021.118293

Zari, M., Smith, R., Wright, C., & Ferrari, R. (2022). Health and environmental impact assessment of landfill mining activities: A case study in Norfolk, UK. Heliyon, e11594.
DOI 10.1016/j.heliyon.2022.e11594