Released under CC BY-NC-ND
Copyright: © 2019 CISA Publisher
Abarca, L., Maas, G., & Hogland, W. (2013). Solid waste management challenges for cities in developing countries. Waste Management, 33(1), 220–232.
DOI 10.1016/j.wasman.2012.09.008
Ahmed, S. M. (2006). Using GIS in Solid Waste Management Planning A case study for Aurangabad , India by Shaikh Moiz Ahmed. Linköpings University.
DOI ISRN: LIU-IDA-D20--06/004--SE
Amundson, J., Sukumara, S., Seay, J., & Badurdeen, F. (2015). Decision Support Models for Integrated Design of Bioenergy Supply Chains. Handbook of Bioenergy.
DOI 10.1007/978-3-319-20092-7_7
Awudu, I., & Zhang, J. (2012). Uncertainties and sustainability concepts in biofuel supply chain management: A review. Renewable and Sustainable Energy Reviews, 16(2), 1359–1368.
DOI 10.1016/j.rser.2011.10.016
Ba, B. H., Prins, C., & Prodhon, C. (2016). Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renewable Energy, 87, 977–989.
DOI 10.1016/j.renene.2015.07.045
Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. (2012). Bioenergy for Sustainable Development in Africa, 117–130.
DOI 10.1007/978-94-007-2181-4
Celli, G., Ghiani, E., Loddo, M., Pilo, F., & Pani, S. (2008). Optimal location of biogas and biomass generation plants. Proceedings of the Universities Power Engineering Conference.
DOI 10.1109/UPEC.2008.4651490
Chalkias, C., & Lasaridi, K. (2009). A GIS based model for the optimisation of municipal solid waste collection : the case study of Nikea , Athens , Greece, 5(10), 640–650
Chalkias, C., & Lasaridi, K. (2011). Benefits from GIS Based Modelling for Municipal Solid Waste Management. In S. Kumar (Ed.), International Waste Management (Vol. 1, pp. 417–434). InTech. Retrieved from http://www.intechopen.com/books/integrated-waste-management-volume-i/benefitsfrom-%0Agis-based-modelling-for-municipal-solid-waste-management
Charis, G., Danha, G., & Muzenda, E. (2018). A critical taxonomy of socio-economic studies around biomass and bio-waste to energy projects. Detritus, 03(2017), 47–57
De Meyer, A., Cattrysse, D., Rasinmäki, J., & Van Orshoven, J. (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews, 31, 657–670.
DOI 10.1016/j.rser.2013.12.036
Eason, J. P., & Cremaschi, S. (2014). A multi-objective superstructure optimization approach to biofeedstocks-to-biofuels systems design. Biomass and Bioenergy, 63, 64–75.
DOI 10.1016/j.biombioe.2014.02.010
Fantom, N., & Serajuddin, U. (2016). The World Bank’s classification of countries by income. Policy research working paper. World Bank , (January).
DOI 10.1596/1813-9450-7528
Gasparatos, A., Von Maltitz, G. P., Johnson, F. X., Lee, L., Mathai, M., Puppim De Oliveira, J. A., & Willis, K. J. (2015). Biofuels in sub-Sahara Africa: Drivers, impacts and priority policy areas. Renewable and Sustainable Energy Reviews, 45, 879–901.
DOI 10.1016/j.rser.2015.02.006
Gold, S., & Seuring, S. (2011). Supply chain and logistics issues of bio-energy production. Journal of Cleaner Production, 19(1), 32–42.
DOI 10.1016/j.jclepro.2010.08.009
Hadidi, L. A., & Omer, M. M. (2017). A financial feasibility model of gasification and anaerobic digestion waste-to-energy ( WTE ) plants in Saudi Arabia. Waste Management, 59, 90–101.
DOI 10.1016/j.wasman.2016.09.030
He-Lambert, L., English, B. C., Lambert, D. M., Shylo, O., Larson, J. A., Yu, T. E., & Wilson, B. (2018). Determining a geographic high resolution supply chain network for a large scale biofuel industry. Applied Energy, 218(November 2017), 266–281.
DOI 10.1016/j.apenergy.2018.02.162
Hombach, L. E., Cambero, C., Sowlati, T., & Walther, G. (2016). Optimal design of supply chains for second generation biofuels incorporating European biofuel regulations. Journal of Cleaner Production, 133, 565–575.
DOI 10.1016/j.jclepro.2016.05.107
Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., & Malamakis, A. (2010). Waste biomass-to-energy supply chain management : A critical synthesis. Waste Management, 30(10), 1860–1870.
DOI 10.1016/j.wasman.2010.02.030
IEA. (2010). SuStainable Production of Second Generation Biofuels. Renewable Energy, 1–39.
DOI 9789461739698
IRENA. (2016). Innovation Outlook Advanced Liquid Biofuels, 132. Retrieved from http://www.irena.org/DocumentDownloads/Publications/IRENA_Innovation_Outlook_Advanced_Liquid_Biofuels_2016.pdf
Ji, X., & Long, X. (2016). A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations, 61, 41–52.
DOI 10.1016/j.rser.2016.03.026
Jingura, R. M., & Kamusoko, R. (2017). Temporal and spatial analysis of electricity generation from biomass sources in sub-Saharan Africa. Cogent Engineering, 4(1), 1–11.
DOI 10.1080/23311916.2017.1296757
Kanzian, C., Holzleitner, F., Stampfer, K., & Ashton, S. (2009). Regional Energy Wood Logistics – Optimizing Local Fuel Supply, 43(December 2008)
Kennes, D., Abubackar, H. N., Diaz, M., Veiga, M. C., & Kennes, C. (2016). Bioethanol production from biomass: Carbohydrate vs syngas fermentation. Journal of Chemical Technology and Biotechnology, 91(2), 304–317.
DOI 10.1002/jctb.4842
Kinoshita, T., Inoue, K., Iwao, K., Kagemoto, H., & Yamagata, Y. (2009). A spatial evaluation of forest biomass usage using GIS, 86, 1–8.
DOI 10.1016/j.apenergy.2008.03.017
Koikai, J. S. (2008). Utilizing GIS-Based Suitability Modeling to Assess the Physical Potential of Bioethanol Processing Plants in Western Kenya. Saint Mary’s University of Minnesota University Central Services Press. Winona, MN, 10(Papers in Resource Analysis), 1–8. Retrieved from www2.smumn.edu/ra/gis/GradProjects/KoikaiJ.pdf
Matheri, A. N., Mbohwa, C., Belaid, M., Seodigeng, T., Ngila, J. C., & Muzenda, E. (2016). Waste to energy technologies from organics fraction of municipal solid waste. Lecture Notes in Engineering and Computer Science, 2226, 1013–1017. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013410593&partnerID=40&md5=3c6754d91ef4596b4c407063d7971d7c
Nhubu, T., Muzenda, E., Mbohwa, C., & Agbenyeku, E. (2017). Sustainability context analysis of municipal solid waste management in Harare, Zimbabwe. In 2nd International Engineering Conference, Federal University of Technology. Minna, Nigeria
Nkosi, N., & Muzenda, E. (2014). A Review and Discussion of Waste Tyre Pyrolysis and Derived Products. Proceedings of the World Congress En Engineering 2014, II
Nogueira, L. A. H., Antonio de Souza, L. G., Cortez, L. A. B., & Leal, M. R. L. V. (2017). Sustainable and Integrated Bioenergy Assessment for Latin America, Caribbean and Africa (SIByl-LACAf): The path from feasibility to acceptability. Renewable and Sustainable Energy Reviews, 76(March), 292–308.
DOI 10.1016/j.rser.2017.01.163
Nwosu, E. E., & Pepple, G. T. (2016). Site Selection and Analysis of Solid Waste Dumpsites in Ile-Ife , Nigeria ( 8363 ). In FIG Working Week 2016 Recovery from Disaster Christchurch, New Zealand. Retrieved from https://www.fig.net/resources/proceedings/fig.../TS07I_nwosu_pepple_8363.pdf%0A
Panichelli, L., & Gnansounou, E. A. (2008). GIS-based approach for defining bioenergy facilities location : A case study in Northern Spain based on marginal delivery costs and resources competition between facilities, 32, 289–300.
DOI 10.1016/j.biombioe.2007.10.008
Pantaleo, A. M., & Shah, N. (2013). The Logistics of Bioenergy Routes for Heat and Power. Biofuels - Economy, Environment and Sustainability, 217–244.
DOI 10.5772/50478
Paolucci, N., Bezzo, F., & Tugnoli, A. (2016). A two-tier approach to the optimization of a biomass supply chain for pyrolysis processes. Biomass and Bioenergy, 84, 87–97.
DOI 10.1016/j.biombioe.2015.11.011
Papadopoulos, D. P., & Katsigiannis, P. A. (2002). Biomass energy surveying and techno-economic assessment of suitable CHP system installations, 22, 105–124
Pilusa, T. J., & Muzenda, E. (2014). Municipal Solid Waste Utilisation for Green Energy in Gauteng Province-South Africa :
Pradhan, A., & Mbohwa, C. (2014). Development of biofuels in South Africa: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 39, 1089–1100.
DOI 10.1016/j.rser.2014.07.131
Prins, C., Ba, B. H., Prins, C., & Prodhon, C. (2015). Bioenergy Supply Chain A New Tactical Optimization Model For Bioenergy Supply Chain, (October)
Quinta-Nova, L., Fernandez, P., & Pedro, N. (2017). GIS-Based Suitability Model for Assessment of Forest Biomass Energy Potential in a Region of Portugal. IOP Conference Series: Earth and Environmental Science, 95(4).
DOI 10.1088/1755-1315/95/4/042059
Sapp, M. (2014a, October). Global Biomass Power Generation market seen growing 7% CAGR through 2018 _ Biofuels Digest. BiofuelsDigest. Retrieved from http://www.biofuelsdigest.com/bdigest/2014/10/15/new-report-shows-biofuels-cagr-globally-at-9-6-between-2013-19/
Sapp, M. (2014b, October). New report shows biofuels CAGR globally at 9% between 2013-2019. BiofuelsDigest. Retrieved from http://www.biofuelsdigest.com/bdigest/2014/10/15/new-report-shows-biofuels-cagr-globally-at-9-6-between-2013-19/
Sapp, M. (2017, April). Technavio study says global advanced biofuel market will reach $ 44 . 6 billion by 2021. BiofuelsDigest, 2021. Retrieved from http://www.biofuelsdigest.com/bdigest/2017/04/17/technavio-study-says-global-advanced-biofuel-market-will-reach-44-6-billion-by-2021/
Shi, X., Elmore, A., Li, X., Gorence, N. J., Jin, H., Zhang, X., & Wang, F. (2008). Using spatial information technologies to select sites for biomass power plants : A case study in Guangdong, 32, 35–43.
DOI 10.1016/j.biombioe.2007.06.008
Sobrino, F. H., Monroy, C. R., & Pérez, J. L. H. (2011). Biofuels and fossil fuels: Life Cycle Analysis (LCA) optimisation through productive resources maximisation. Renewable and Sustainable Energy Reviews.
DOI 10.1016/j.rser.2011.03.010
Stecher, K., Brosowski, A., & Thrän, D. (2013). Biomass potential in Africa. Irena, 44. Retrieved from www.dbfz.de
Sufiyan, I., Dasuki, S. I., & Kontagora, I. M. (2015). Design and Development of GIS Database for Informational Awareness on Waste Disposal in Keffi Nigeria, 9(12), 46–53.
DOI 10.9790/2402-091224653
Tan, S. T., Hashim, H., Lee, C. T., Lim, J. S., & Kanniah, K. D. (2014). Optimal waste-to-energy strategy assisted by GIS for sustainable solid waste management. IOP Conference Series: Earth and Environmental Science, 18(1).
DOI 10.1088/1755-1315/18/1/012159
Tembo, G., Epplin, F. M., Huhnke, R. L., Tembo, G., Epplin, F. M., & Huhnke, R. L. (2018). Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry Integrative Investment Appraisal of a Lignocellulosic Biomass-to-Ethanol Industry, 28(3), 611–633
Vlachos, D., Iakovou, E., Karagiannidis, A., & Toka, A. (2008). A Strategic Supply Chain Management Model for Waste Biomass Networks. Proceedings of the 3rd International Conference on Manufacturing Engineering, (October), 797–804. Retrieved from http://www.wtert.gr/attachments/article/217/Karagiannidis_BiomassConceptual.pdf
Voivontas, D., Assimacopoulos, D., & Koukios, E. G. (2001). Assessment of biomass potential for power production : a GIS based method, 20, 101–112
Von Maltitz, G. P., & Setzkorn, K. A. (2013). A typology of Southern African biofuel feedstock production projects. Biomass and Bioenergy, 59, 33–49.
DOI 10.1016/j.biombioe.2012.11.024
Woo, H., Acuna, M., Moroni, M., Taskhiri, M. S., & Turner, P. (2018). Optimizing the location of biomass energy facilities by integrating Multi-Criteria Analysis (MCA) and Geographical Information Systems (GIS). Forests, 9(10), 1–15.
DOI 10.3390/f9100585
World Energy Council. (2016). World Energy Resources: Waste to Energy. Retrieved from https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_7b_Waste_to_Energy.pdf
Yawson, D. O., Armah, F. A., & Pappoe, A. N. M. (2009). Enabling sustainability: Hierarchical need-based framework for promoting sustainable data infrastructure in developing countries. Sustainability, 1(4), 946–959.
DOI 10.3390/su1040946
You, F., Graziano, D. J., & Snyder, S. W. (2012). Optimal Design of Sustainable Cellulosic Biofuel Supply Chains : Multiobjective Optimization Coupled with Life Cycle Assessment and Input – Output Analysis. AIChE Journal.
DOI 10.1002/aic
Zhan, F. B., Chen, X., Noon, C. E., & Wu, G. (2005). A GIS-enabled comparison of fixed and discriminatory pricing strategies for potential switchgrass-to-ethanol conversion facilities in Alabama, 28, 295–306.
DOI 10.1016/j.biombioe.2004.06.006
Zhang, F., Johnson, D., Johnson, M., Watkins, D., Froese, R., & Wang, J. (2016). Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain. Renewable Energy, 85, 740–748.
DOI 10.1016/j.renene.2015.07.041
Pedro Melo Rodrigues and Joaquim Esteves da Silva
Published 28 Jun 2019Ian D. Williams, Toby J. Roberts, Lina Maria Zapata-Restrepo, Maria Neophytou, Angelos Ktoris, Androniki Maragkidou and Jukka-Pekka Jalkanen
Published 28 Jun 2019Lina Maria Zapata-Restrepo, Ian D. Williams, Malcolm Hudson, Georgia Freeman, Bronwyn Lee and Clement Prieul
Published 28 Jun 2019Title | Support | Price |
---|