Released under All rights reserved
Copyright: © 2025 CISA Publisher
Aslan, D. I., Parthasarathy, P., Goldfarb, J. L., & Ceylan, S. (2017). Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization. Waste Management, 68, 405-411.
DOI 10.1016/j.wasman.2017.06.006
Coats, A., & Redfern, J.-P. (1965). Kinetic parameters from thermogravimetric data. II. Journal of Polymer Science Part B: Polymer Letters, 3(11), 917-920.
DOI 10.1002/pol.1965.110031106
Danon, B., & Görgens, J. (2015). Determining rubber composition of waste tyres using devolatilisation kinetics. Thermochimica Acta, 621, 56-60.
DOI 10.1016/j.tca.2015.10.008
Danon, B., Mkhize, N., Van Der Gryp, P., & Görgens, J. (2015). Combined model-free and model-based devolatilisation kinetics of tyre rubbers. Thermochimica acta, 601, 45-53.
DOI 10.1016/j.tca.2014.12.003
Ding, K., Zhong, Z., Zhang, B., Song, Z., & Qian, X. (2015). Pyrolysis characteristics of waste tire in an analytical pyrolyzer coupled with gas chromatography/mass spectrometry. Energy & Fuels, 29(5), 3181-3187.
DOI 10.1021/acs.energyfuels.5b00247
Ding, K., Zhong, Z., Zhang, B., Wang, J., Min, A., & Ruan, R. (2016). Catalytic pyrolysis of waste tire to produce valuable aromatic hydrocarbons: an analytical Py-GC/MS study. Journal of Analytical and applied Pyrolysis, 122, 55-63.
DOI 10.1016/j.jaap.2016.10.023
Doddipatla, S., Galimova, G. R., Wei, H., Thomas, A. M., He, C., Yang, Z., Morozov, A. N., Shingledecker, C. N., Mebel, A. M., & Kaiser, R. I. (2021). Low-temperature gas-phase formation of indene in the interstellar medium. Science advances, 7(1), eabd4044.
DOI 10.1126/sciadv.abd4044
Friedman, H. L. (1964). Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of polymer science part C: polymer symposia,
Han, J., Li, W., Liu, D., Qin, L., Chen, W., & Xing, F. (2018). Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. Journal of Analytical and applied Pyrolysis, 129, 1-5.
DOI 10.1016/j.jaap.2017.12.016
Han, J., Yao, X., Zhan, Y., Oh, S.-Y., Kim, L.-H., & Kim, H.-J. (2017). A method for estimating higher heating value of biomass-plastic fuel. Journal of the Energy Institute, 90(2), 331-335
Iwarere, S. A., & Mkhize, N. M. (2019). PYROLYSIS OF VARIOUS TYRE TYPES: CHARACTERISTICS AND KINETIC STUDIES USING THERMOGRAVIMETRIC ANALYSIS. Detritus(2019-Volume), 0.
DOI 10.31025/2611-4135/2019.13870
Khawam, A., & Flanagan, D. R. (2006). Basics and applications of solid-state kinetics: a pharmaceutical perspective. Journal of pharmaceutical sciences, 95(3), 472-498.
DOI 10.1002/jps.20559
Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29(11), 1702-1706
Leung, D., & Wang, C. (1998). Kinetic study of scrap tyre pyrolysis and combustion. Journal of Analytical and applied Pyrolysis, 45(2), 153-169.
DOI 10.1016/S0165-2370(98)00065-5
Li, S.-Q., Yao, Q., Chi, Y., Yan, J.-H., & Cen, K.-F. (2004). Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Industrial & Engineering Chemistry Research, 43(17), 5133-5145.
DOI 10.1021/ie030115m
Menares, T., Herrera, J., Romero, R., Osorio, P., & Arteaga-Pérez, L. E. (2020). Waste tires pyrolysis kinetics and reaction mechanisms explained by TGA and Py-GC/MS under kinetically-controlled regime. Waste Management, 102, 21-29.
DOI 10.1016/j.wasman.2019.10.027
Mkhize, N., Danon, B., van der Gryp, P., & Görgens, J. (2019). Kinetic study of the effect of the heating rate on the waste tyre pyrolysis to maximise limonene production. Chemical Engineering Research and Design, 152, 363-371.
DOI 10.1016/j.cherd.2019.09.036
Mkhize, N., van der Gryp, P., Danon, B., & Görgens, J. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and applied Pyrolysis, 120, 314-320.
DOI 10.1016/j.jaap.2016.04.019
Mwelwa, M. K., Iwarere, S. A., & Mkhize, N. M. (2023). Advances in understanding kinetic mechanisms underlying waste ground tyre rubber pyrolysis. Detritus(24), 52.
DOI 10.31025/2611-4135/2023.18315
Ngxangxa, S. (2016). Development of GC-MS methods for the analysis of tyre pyrolysis oils [Thesis (MSc), Stellenbosch: Stellenbosch University]. http://hdl.handle.net/10019.1/98868
Quek, A., & Balasubramanian, R. (2012). Mathematical modeling of rubber tire pyrolysis. Journal of Analytical and applied Pyrolysis, 95, 1-13.
DOI 10.1016/j.jhazmat.2008.11.034
Roy, C., & Unsworth, J. (1989). Pilot plant demonstration of used tyres vacuum pyrolysis. Pyrolysis and gasification, 180-189
Seidelt, S., Müller-Hagedorn, M., & Bockhorn, H. (2006). Description of tire pyrolysis by thermal degradation behaviour of main components. Journal of analytical and applied pyrolysis, 75(1), 11-18.
DOI 10.1016/j.jaap.2005.03.002
Smitha, B., Suhanya, D., Sridhar, S., & Ramakrishna, M. (2004). Separation of organic–organic mixtures by pervaporation—a review. Journal of Membrane Science, 241(1), 1-21.
DOI 10.1016/j.memsci.2004.03.042
Starink, M. (2003). The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica acta, 404(1-2), 163-176
Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G. N., Azimi, A. A., & Ghadiri, S. K. (2010). Removal of petroleum aromatic hydrocarbons by surfactant‐modified natural zeolite: the effect of surfactant. CLEAN–Soil, Air, Water, 38(1), 77-83.
DOI 10.1002/clen.200900157
Tsipa, P. C., Phiri, M. M., Iwarere, S. A., Mkhize, N. M., Phiri, M. J., & Hlangothi, S. P. (2024). A novel chemical pre-pyrolysis treatment of waste tyre crumbs: A viable way for low temperature waste tyre pyrolysis. Journal of analytical and applied pyrolysis, 181, 106631.
DOI 10.1016/j.jaap.2024.106631
Venkatesh, M., Ravi, P., & Tewari, S. P. (2013). Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn–Wall–Ozawa method. The Journal of Physical Chemistry A, 117(40), 10162-10169.
DOI 10.1021/jp407526r
Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 520(1-2), 1-19.
DOI 10.1016/j.tca.2011.03.034
Williams, P. T., & Besler, S. (1995). Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel, 74(9), 1277-1283.
DOI 10.1016/0016-2361(95)00083-H
Xu, F., Wang, B., Yang, D., Ming, X., Jiang, Y., Hao, J., Qiao, Y., & Tian, Y. (2018). TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 175, 288-297.
DOI 10.1016/j.enconman.2018.09.013
Ricardo Figueira Bidone and Claudio Fernando Mahler
Published 09 Sep 2025Carmen Martínez-García, María Teresa Cotes-Palomino, Ana B. López, Carlos J. Cobo-Ceacero, Ana C. Revelo-Rodríguez, Francisco J. Troyano-Pérez, Francisco J. Iglesias-Godino, Francisco de Asís Torres-Fernández and Alejandro Dubbelman-Vizcaíno
Published 09 Sep 2025Salvador Pocoví-Martínez, Laura Grima-Carmena, Sales Ibiza Palacios, Lucía Martín Román, Carla Camiña Urgel and Francisco Bosch Mossi
Published 09 Sep 2025Title | Support | Price |
---|