an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

SUSTAINABLE SOIL STABILIZATION OF ROAD PAVEMENT LAYERS USING WASTE MATERIALS: A MINI-REVIEW

  • Victor Ajayi - Department of Civil Engineering, Covenant University, Nigeria
  • Promise Epelle - Department of Civil Engineering, Covenant University, Nigeria
  • Isaac Akinwumi - Department of Civil Engineering, Covenant University, Nigeria

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Abstract

The escalating generation of waste necessitates sustainable management strategies. This review explores the potential of waste materials as sustainable stabilizers for soil used in road construction. Conventional stabilizers like cement, while effective, comes with environmental drawbacks that should be addressed. Alternatively, diverse waste-based materials are being investigated as potential substitutes. Their usage in this regard contributes to lessen adverse ecological impact and improve soil properties at potentially low costs. Prior to the application of a specific soil stabilised with a specific waste material for a specific purpose, the potential risk of local environmental and health impacts from release and spreading of harmful substances due to leaching or escape of fugitive dust must be assessed and appropriate action (precautions, mitigating measures, changes of the soil/stabilizer mixture) must be taken when necessary to prevent unacceptable impacts. If properly managed, the utilization of waste materials for soil stabilization aligns with several United Nations Sustainable Development Goals (SDGs). By diverting waste from landfills and promoting their use in construction, this approach presents a win-win scenario for both economic and environmental sustainability. Further research and development efforts are crucial to optimize waste-based soil stabilization techniques, ensuring durable and eco-friendly pavements. These wastes ultimately improve strength of the target soil, however, careful consideration should be given to determine the performance of these wastes as stabilizers and to know what aspects would require mitigation to maximize the potential of these waste materials to be used for good, instead of causing more harm to the ecosystem.

Keywords


Editorial History

  • Received: 10 Dec 2023
  • Revised: 30 Jun 2024
  • Accepted: 04 Jul 2024
  • Available online: 10 Oct 2024

References

Abdelkader, H. A. M., Ahmed, A. S. A., Hussein, M. M. A., Ye, H., & Zhang, J. (2022). An Experimental Study on Geotechnical Properties and Micro-Structure of Expansive Soil Stabilized with Waste Granite Dust. Sustainability, 14(10), 6218.
DOI 10.3390/su14106218

Abu Talib, M. K., & Noriyuki, Y. (2017). Highly Organic Soil Stabilization by Using Sugarcane Bagasse Ash (SCBA). MATEC Web of Conferences, 103, 07013.
DOI 10.1051/matecconf/201710307013

Ahmad, S., Mohd Ghazi, S. A., Syed, M., & Al-Osta, M. A. (2024). Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review. Results in Engineering, 102079.
DOI 10.1016/j.rineng.2024.102079

Ahmed, A. R., Nischitha, C. S., Chethan, L., & Manoj, P. (2019). Stabilization of Subgrade Soil using Reclaimed Asphalt Pavement (RAP). International Journal of Engineering and Advanced Technology, 8(5), 2661–2666

Akinwumi, I. (2014). Soil Modification by the Application of Steel Slag. Periodica Polytechnica Civil Engineering, 58(4), 371–377.
DOI 10.3311/ppci.7239

Akinwumi, I. I., Onyeiwu, M., Promise Epelle, & Ajayi, V. (2023). Soil Improvement Using Blends of Coal Ash and Plantain Peel Ash as Road Pavement Layer Materials. Resources, 12(3), 41–41.
DOI 10.3390/resources12030041

Akinwumi, I. I., Ajayi, O. O., Agarana, M. C., Ogbiye, A. S., Ojuri, O. O., & David, A. O. (2018). Investigation of calcium carbide residue as a stabilizer for tropical sand used as pavement material. WIT Transactions on The Built Environment, 182, 285–294.
DOI 10.2495/UT180261

Aldeeky, H., & Al Hattamleh, O. (2017). Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil. Advances in Civil Engineering, 2017, 1–11.
DOI 10.1155/2017/9230279

Alhaji, M. M., & Alhassan, M. (2018). Effect of Reclaimed Asphalt Pavement Stabilization on the Microstructure and Strength of Black Cotton Soil. International Journal of Technology, 9(4), 722.
DOI 10.14716/ijtech.v9i4.435

Alhassan, M. (2008). Potentials of Rice Husk Ash for Soil Stabilization. Assumption University (AU) Journal of Technology, 11(4), 246–250

Alhassan, M., & Mustapha, A. M. (2015). Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review. Proceeding of 17th International Conference on Civil and Building Engineering, 1040–1049

Al-khafaji, R., Jafer, H. M., & Dulaimi, A., Atherton, W., & Jwaida, Z. (2017). Soft soil stabilization using ground granulated blast furnace slag. The 3rd BUiD Doctoral Research Conference, 2–14

Al-Obaydi, M. A., Abdulnafaa, M. D., Atasoy, O. A., & Cabalar, A. F. (2021). Correction to: Improvement in Field CBR Values of Subgrade Soil Using Construction-Demolition Materials. Transportation Infrastructure Geotechnology, 9(3), 402–402.
DOI 10.1007/s40515-021-00176-5

Amaya, N. (2018). The World’s Leading Plantain Producers (WorldAtlas). Retrieved March 31, 2024. https://www.worldatlas.com/articles/the-world-s-leading-plantain-producers.html

Amulya, G., Moghal, A. A. B., & Almajed, A. (2021). A State-of-the-Art Review on Suitability of Granite Dust as a Sustainable Additive for Geotechnical Applications. Crystals, 11(12), 1526.
DOI 10.3390/cryst11121526

Anburuvel, A., Sathiparan, N., Dhananjaya, G. M. A, & Anuruththan, A. (2023). Characteristic Evaluation of Geopolymer Based Lateritic Soil Stabilization Enriched with Eggshell Ash and Rice Husk Ash for Road Construction: An Experimental Investigation. Construction and Building Materials, 387, 131659.
DOI 10.1016/j.conbuildmat.2023.131659

Andavan, S., & Hassaan, M. (2018). Study on Flyash Soil Stabilization. International Journal of Pure and Applied Mathematics, 119(18), 2185–2192

Aravind, K., & Das, A. (2007). Pavement design with central plant hot-mix recycled asphalt mixes. Construction and Building Materials, 21(5), 928–936.
DOI 10.1016/j.conbuildmat.2006.05.004

Arel, H. Ş. (2016). Recyclability of waste marble in concrete production. Journal of Cleaner Production, 131, 179–188.
DOI 10.1016/j.jclepro.2016.05.052

Arulrajah, A., Disfani, M. M., Horpibulsuk, S., Suksiripattanapong, C., & Prongmanee, N. (2014). Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 245–257.
DOI 10.1016/j.conbuildmat.2014.02.025

Arulrajah, A., Mohammadinia, A., Haghighi, H., & Horpibulsuk, S. (2020). Effect of moisture sensitivity on the light stabilisation of demolition materials in pavement bases. Road Materials and Pavement Design, 23(4), 787–801.
DOI 10.1080/14680629.2020.1843525

Avirneni, D., Peddinti, P. R. T., & Saride, S. (2016). Durability and long term performance of geopolymer stabilized reclaimed asphalt pavement base courses. Construction and Building Materials, 121, 198–209.
DOI 10.1016/j.conbuildmat.2016.05.162

Awadalseed, W., Zhao, H., Sun, H., Huang, M., & Liu, C. (2023). Expansive Soil Stabilization by Bagasse Ash in Partial Replacement of Cement. Journal of Renewable Materials, 11(4), 1911–1935.
DOI 10.32604/jrm.2023.025100

Aydin, E., & Arel, H. Ş. (2019). High-volume marble substitution in cement-paste: Towards a better sustainability. Journal of Cleaner Production, 237, 117801.
DOI 10.1016/j.jclepro.2019.117801’

Ayodele, F. O., Fajimi, M. S., & Alo, B. A. (2022). Stabilization of tropical soil using calcium carbide residue and rice husk ash. Materials Today: Proceedings, 60, 216-222.
DOI 10.1016/j.matpr.2021.12.465

Babu, K. M.,& Nagaraju, C. (2022). Stabilization of Black Cotton Soil Using Granite Waste. Journal of Engineering Sciences, 13(11), 534–538

Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A., Enabulele, D. O., & Nworgu, A. T. (2021). Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 283, 124581.
DOI 10.1016/j.jclepro.2020.124581

Barbuta, M., Bucur, R. D., Cimpeanu, S. M., Paraschiv, G., & Bucur, D. (2015). Wastes in Building Materials Industry. Agroecology.
DOI 10.5772/59933

Basha, E. A., Hashim, R., Mahmud, H. B., & Muntohar, A. S. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448–453.
DOI 10.1016/j.conbuildmat.2004.08.001

Behak, L. (2017). Soil Stabilization with Rice Husk Ash. Rice - Technology and Production, 2017.
DOI 10.5772/66311

Bhatt, A., Priyadarshini, S., Mohanakrishnan, A. A., Abri, A., Sattler, M., Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. (2019). Case Studies in Construction Materials, 11, e00263.
DOI 10.1016/j.cscm.2019.e00263

Bordoloi, S., Garg, A., & Sekharan, S. (2017). A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement. Advances in Civil Engineering Materials, 6(1), 20160076.
DOI 10.1520/acem20160076

Celik, E., & Nalbantoglu, Z. (2013). Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Engineering Geology, 163, 20–25.
DOI 10.1016/j.enggeo.2013.05.016

Celauro, C., Corriere, F., Guerrieri, M., & Barbara Lo Casto. (2015). Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road. Transportation Research Part D-Transport and Environment, 34, 41–51.
DOI 10.1016/j.trd.2014.10.001

Chen, R., Cai, G., Congress, C., Dong, X., & Duan, W. (2020). Dynamic properties and environmental impact of waste red mud-treated loess under adverse conditions. Bulletin of Engineering Geology and the Environment, 80(1), 93–113.
DOI 10.1007/s10064-020-01937-1

Chen, C., Wu, S.-R., & Kao, C.-T. (2023). Reaction Properties of Basic Oxygen Furnace Slag and Methane in a Fluidized-Bed Chemical Looping System. ACS Omega, 8(49), 47075–47085.
DOI 10.1021/acsomega.3c03390

Chindaprasirt, P., Kampala, A., Jitsangiam, P., & Horpibulsuk, S. (2020). Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials. Case Studies in Construction Materials, 13, e00389.
DOI 10.1016/j.cscm.2020.e00389

Choi, S. Y., & Yang, E. I. (2020). An Experimental Study on Alkali Silica Reaction of Concrete Specimen Using Steel Slag as Aggregate. Applied Sciences, 10(19), 6699–6699.
DOI 10.3390/app10196699

Choudhari, O. K., Spalgais, S., Sharma, D., Chaudhary, A., & Ojha, U. C. (2020). BAGASSOSIS: A CASE REPORT ON RARE HYPERSENSITIVITY PNEUMONITIS. Indian Journal of Case Reports, 6(7), 409–412.
DOI 10.32677/ijcr.2020.v06.i07.019

Cornelis, G., Johnson, C. A., Gerven, T. V., & Vandecasteele, C. (2008). Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Applied Geochemistry, 23(5), 955–976.
DOI 10.1016/j.apgeochem.2008.02.001

Dahal, B. K., Zheng, J., Zhang, R., & Song, D. (2018). Enhancing the mechanical properties of marine clay using cement solidification. Marine Georesources & Geotechnology, 37(6), 755–764.
DOI 10.1080/1064119x.2018.1484532

Dang, L. C., Khabbaz, H., & Ni, B.-J. (2021). Improving engineering characteristics of expansive soils using industry waste as a sustainable application for reuse of bagasse ash. Transportation Geotechnics, 31, 100637.
DOI 10.1016/j.trgeo.2021.100637

Danish, A., Salim, M., & Ahmed, T. (2019). Trends and developments in green cement “A sustainable approach.” 2(1), 45–60.
DOI 10.26392/SSM.2019.02.01.045

Danish, A., Mosaberpanah, M. A., Salim, M. U., Fediuk, R., Rashid, M. F., & Waqas, R. M. (2021). Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges. Journal of Building Engineering, 44, 102600.
DOI 10.1016/j.jobe.2021.102600

Datta, S., & Mofiz, S. A. (2021). Stabilization of Road Subgrade Soil Using Recycled Aggregates. International Journal on Emerging Technologies, 12(1), 87–93

Della, V. P., Kühn, I., & Hotza, D. (2002). Rice husk ash as an alternate source for active silica production. Materials Letters, 57(4), 818–821.
DOI 10.1016/s0167-577x(02)00879-0

Díaz-López, J. L., Cabrera, M., Agrela, F., & Rosales, J. (2023). Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers. Geomechanics for Energy and the Environment, 36, 100496–100496.
DOI 10.1016/j.gete.2023.100496

Du, Y. J., Zhang, Y. Y., & Liu, S. Y. (2011). Investigation of strength and california bearing ratio properties of natural soils treated by calcium carbide residues. Proceedings of Geo-Frontiers Advances in Geotechnical Engineering, 1237–1244

Du, Y.-J., Jiang, N.-J., Liu, S.-Y., Horpibulsuk, S., & Arulrajah, A. (2016). Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue. Soils and Foundations, 56(2), 301–314.
DOI 10.1016/j.sandf.2016.02.012

Edeh, J. E., Eberemu, A. O., & Agnes, O. (2011). Lateritic Soil Stabilization of Reclaimed Asphalt Pavement as Flexible Highway Pavement Materials. Advanced Materials Research, 367, 3–11.
DOI 10.4028/www.scientific.net/amr.367.3

Eltwati, A. S., Tarhuni, F., & Elkaseh, A. (2020). Engineering properties of clayey soil stabilized with waste granite dust. International Journal of Advanced Science and Technology, 29, 750-757

Ettler, V., & Vítková, M. (2021). Slag Leaching Properties and Release of Contaminants. Chemistry in the Environment, 5, 151–173.
DOI 10.1039/9781839164576-00151

Evangelista, L., Guedes, M., de Brito, J., Ferro, A. C., & Pereira, M. F. (2015). Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Construction and Building Materials, 86, 178–188.
DOI 10.1016/j.conbuildmat.2015.03.112

Ewa, D. E., Egbe, E. A., Ukpata, J. O., & Etika, A. (2022). Sustainable Subgrade Improvement Using Limestone Dust and Sugarcane Bagasse Ash. Sustainable Technology and Entrepreneurship, 100028.
DOI 10.1016/j.stae.2022.100028

Foye, K. C. (2011). Use of Reclaimed Asphalt Pavement in Conjunction with Ground Improvement: A Case History. Advances in Civil Engineering, 2011, 1–7.
DOI 10.1155/2011/808561

Galvín, A. P., Ayuso, J., Agrela, F., Barbudo, A., & Jiménez, J. R. (2013). Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Construction and Building Materials, 40, 1207–1214.
DOI 10.1016/j.conbuildmat.2011.12.091

Gandhi, K. S. (2012). Expansive Soil Stabilization Using Bagasse Ash. International Journal of Engineering Research & Technology, 1(5), 2–3

Gencel, O., Erdugmus, E., Sutcu, M., & Oren, O. H. (2020). Effects of concrete waste on characteristics of structural fired clay bricks. Construction and Building Materials, 255, 119362.
DOI 10.1016/j.conbuildmat.2020.119362

Ghutke, M. V., Bhandari, P., & Agrawal, M. V. (2018). Stabilization of soil by using rice husk ash. The International Journal of Engineering and Science, 92–95

Gireesh Kumar, P., & Harika, S. (2020). Stabilization of expansive subgrade soil by using fly ash. Materials Today: Proceedings, 45, 6558–6562.
DOI 10.1016/j.matpr.2020.11.469

Gomes Correia, A., Winter, M. G., & Puppala, A. J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, 21–28.
DOI 10.1016/j.trgeo.2016.03.003

Habiba, A. (2017). A Review on Different Types of Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology, 3, 19–24

Hashemian, S. E., Nejad, F. M., & Esmaeili, M. (2023). Laboratory and numerical investigation on the behavior of reclaimed asphalt pavement (RAP) as railway track subballast layer. Construction and Building Materials, 384, 131442–131442.
DOI 10.1016/j.conbuildmat.2023.131442

Hassan, S., Mazhar, W., Farooq, S., Ali, A., & Syed Ghulam Musharraf. (2019). Assessment of heavy metals in calcium carbide treated mangoes by inductively coupled plasma-mass spectrometry (ICP-MS). Food Additives & Contaminants: Part A, 36(12), 1769–1776.
DOI 10.1080/19440049.2019.1671990

Horpibulsuk, S., Phetchuay, C., Chinkulkijniwat, A., & Cholaphatsorn, A. (2013). Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils and Foundations, 53(4), 477–486.
DOI 10.1016/j.sandf.2013.06.001

Horpibulsuk, S., Phetchuay, C., & Chinkulkijniwat, A. (2012). Soil Stabilization by Calcium Carbide Residue and Fly Ash. Journal of Materials in Civil Engineering, 24(2), 184–193.
DOI 10.1061/(asce)mt.1943-5533.0000370

Huang, Y., Bird, R., & Heidrich, O. (2009). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17(2), 283–296.
DOI 10.1016/j.jclepro.2008.06.005

IARC (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC monographs on the evaluation of carcinogenic risks to humans, 92, 1–853

Ifetayo, O., Pretorius, J.-H. C. (2018). Engineering Properties of Black Cotton Soil Stabilized with Plantain Peel Powder. Proceedings of the International Conference on Industrial Engineering and Operations Management, 9, 958–966

Ishola, K., Agbolade, I. C., & Yohanna, P. (2019). Effect of Plantain Peel Ash on Gradation and Compaction Characteristics of Tropical Soil. FUOYE Journal of Engineering and Technology, 4(2), 28–33.
DOI 10.46792/fuoyejet.v4i2.382

Jaja, G. W. T., & Tamunoemi, A. LongJohn. (2022). Stabilization of Lateritic Soils Using Steel Slag. Journal of Architecture and Civil Engineering, 7(2), 7–16

Jin, F., Gu, K., & Al-Tabbaa, A. (2015). Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cement and Concrete Composites, 57, 8–16.
DOI 10.1016/j.cemconcomp.2014.10.007

Julphunthong, P., Joyklad, P., Manprom, P., Chompoorat, T., Palou, M.-T., & Suriwong, T. (2024). Evaluation of calcium carbide residue and fly ash as sustainable binders for environmentally friendly loess soil stabilization. Scientific Reports, 14, 671.
DOI 10.1038/s41598-024-51326-x

Juveria, F., Rajeev, P., Jegatheesan, P., & Sanjayan, J. (2023). Impact of stabilisation on mechanical properties of recycled concrete aggregate mixed with waste tyre rubber as a pavement material. Case Studies in Construction Materials, 18, e02001.
DOI 10.1016/j.cscm.2023.e02001

Kabeta, W. F., & Lemma, H. (2023). Modeling the application of steel slag in stabilizing expansive soil. Modeling Earth Systems and Environment.
DOI 10.1007/s40808-023-01734-1

Kanniyappan, S. P., Balakumaran, S., Dhilip Kumar, R. G., & Lavanya, C. (2019). Soil Stabilization Using Construction and Demolition Waste in Road Construction. Pramana Research Journal, 9(6), 903–909

Karami, H., Pooni, J., Robert, D., Costa, S., Li, Jie., & Setunge, Sujeeva. (2021). Use of secondary additives in fly ash based soil stabilization for soft subgrades. Transportation Geotechnics, 29, 100585.
DOI 10.1016/j.trgeo.2021.100585

Kassa, R. B., Workie, T., Abdela, A., Fekade, M., Saleh, M., & Dejene, Y. (2020). Soil Stabilization Using Waste Plastic Materials. Open Journal of Civil Engineering, 10(01), 55–68.
DOI 10.4236/ojce.2020.101006

Khan, S. H. (2019). Use of Gypsum and Bagasse Ash for Stabilization of Low Plastic and High Plastic Clay. Journal of Applied Research on Industrial Engineering, 6(3), 251–267.
DOI 10.22105/jarie.2019.193339.1096

Khandelwal, A., Kishor, R., & Singh, V. P. (2022). Sustainable utilization of sugarcane bagasse ash in highway subgrade- a critical review. Materials Today: Proceedings, 78, 114–119.
DOI 10.1016/j.matpr.2022.11.310

Kianimehr, M., Shourijeh, P. T., Binesh, S. M., Mohammadinia, A., & Arulrajah, A. (2019). Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials, 227, 116792.
DOI 10.1016/j.conbuildmat.2019.116792

Komaei, A., Noorzad, A., & Ghadir, P. (2023). Stabilization and solidification of arsenic contaminated silty sand using alkaline activated slag. Journal of Environmental Management, 344, 118395–118395.
DOI 10.1016/j.jenvman.2023.118395

Krammart, P., & Tangtermsirikul, S. (2004). Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste. Construction and Building Materials, 18(8), 579–583.
DOI 10.1016/j.conbuildmat.2004.04.014

Kumar, A., & Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44(3), 466–474.
DOI 10.1016/j.geotexmem.2015.07.010

Legret, M., Odie, L., Demare, D., & Jullien, A. (2005). Leaching of heavy metals and polycyclic aromatic hydrocarbons from reclaimed asphalt pavement. Water Research, 39(15), 3675–3685.
DOI 10.1016/j.watres.2005.06.017

Li, L. G., Wang, Y. M., Tan, Y. P., & Kwan, A. K. H. (2019). Filler technology of adding granite dust to reduce cement content and increase strength of mortar. Powder Technology, 342, 388–396.
DOI 10.1016/j.powtec.2018.09.084

Li, J., Shan, Y., Ni, P., Cui, J., Li, Y., & Zhou, J. (2024). Mechanics, durability, and microstructure analysis of marine soil stabilized by an eco-friendly calcium carbide residue-activated coal gangue geopolymer. Case Studies in Construction Materials, 20, e02687–e02687.
DOI 10.1016/j.cscm.2023.e02687

Lima, D., Jair Arrieta-Baldovino, & Izzo, S. (2023). Sustainable Use of Recycled Asphalt Pavement in Soil Stabilization. Civil Engineering Journal, 9(9), 2315–2329.
DOI 10.28991/cej-2023-09-09-016

Liu, F., Liu, J., Yu, Q., Jin, Y., & Nie, Y. (2005). Leaching Characteristics of Heavy Metals in Municipal Solid Waste Incinerator Fly Ash. Journal of Environmental Science and Health, Part A, 40(10), 1975–1985.
DOI 10.1080/10934520500184707

Lu, C., Chen, J., Gu, C., Wang, J., Cai, Y., Zhang, T., & lin, G. (2021). Resilient and permanent deformation behaviors of construction and demolition wastes in unbound pavement base and subbase applications. Transportation Geotechnics, 28, 100541.
DOI 10.1016/j.trgeo.2021.100541

Mansour, E., Kinuthia, J., Oti, J., & Al-Waked, Q. (2022). Sulfate soil stabilisation with binary blends of lime–silica fume and lime–ground granulated blast furnace slag. Transportation Geotechnics, 37, 100888.
DOI 10.1016/j.trgeo.2022.100888

Md Zahri, A., & Zainorabidin, A. (2019). An overview of traditional and non traditional stabilizer for soft soil. IOP Conference Series: Materials Science and Engineering, 527, 012015.
DOI 10.1088/1757-899x/527/1/012015

Mehta, P. K. (1986). Concrete Structure, Properties and Materials. Prentice Hall, Englewood Cliffs, N.J

Mekonnen, E., Kebede, A., Tafesse, T., & Tafesse, M. (2020). Application of Microbial Bioenzymes in Soil Stabilization. International Journal of Microbiology, 2020, 1–8.
DOI 10.1155/2020/1725482

Mikos, A. P., Ng, C. W. W., & Faro, V. P. (2021). Sustainable Application of Fine Recycled-Concrete Aggregate in Soil-Nailing Grout. Journal of Materials in Civil Engineering, 33(8), 04021196.
DOI 10.1061/(asce)mt.1943-5533.0003814

Milad, A., Mohd Taib, A., G. F Ahmeda, A., Solla, M., & Md Yusoff, N. I. (2020). A REVIEW OF THE USE OF RECLAIMED ASPHALT PAVEMENT FOR ROAD PAVING APPLICATIONS. Jurnal Teknologi, 82(3).
DOI 10.11113/jt.v82.14320

Mohammadinia, A., Naeini, M., Arulrajah, A., Horpibulsuk, S., & Leong, M. (2020). Shakedown analysis of recycled materials as railway capping layer under cyclic loading. Soil Dynamics and Earthquake Engineering, 139, 106423.
DOI 10.1016/j.soildyn.2020.106423

Moreno-Juez, J., Vegas, I. J., Frías Rojas, M., Vigil de la Villa, R., & Guede-Vázquez, E. (2021). Laboratory-scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements. Construction and Building Materials, 271, 121823.
DOI 10.1016/j.conbuildmat.2020.121823

Müllauer, W., Beddoe, R. E., & Heinz, D. (2015). Leaching behaviour of major and trace elements from concrete: Effect of fly ash and GGBS. Cement and Concrete Composites, 58, 129–139.
DOI 10.1016/j.cemconcomp.2015.02.002

Mumtaz, A., & Bhatia, S. (2022). Potential of Soil Stabilization Using Ground Granulated Blast-Furnace Slag (GGBS). International Journal of Innovative Research in Computer Science & Technology, 10(6), 10–16

Nair, D. G., Jagadish, K. S., & Fraaij, A. (2006). Reactive pozzolanas from rice husk ash: An alternative to cement for rural housing. Cement and Concrete Research, 36(6), 1062–1071.
DOI 10.1016/j.cemconres.2006.03.012

Najm, O., El-Hassan, H., & El-Dieb, A. (2021). Ladle slag characteristics and use in mortar and concrete: A comprehensive review. Journal of Cleaner Production, 288, 125584.
DOI 10.1016/j.jclepro.2020.125584

Nassar, K., & Nassar, W. (2006). Reclaimed Asphalt Pavement Detection and Quantity Determination. Practice Periodical on Structural Design and Construction, 11(3), 171–176.
DOI 10.1061/(asce)1084-0680(2006)11:3(171)

Navarro, C., Díaz, M., & Villa-García, M. A. (2010). Physico-Chemical Characterization of Steel Slag. Study of its Behavior under Simulated Environmental Conditions. Environmental Science & Technology, 44(14), 5383–5388.
DOI 10.1021/es100690b

Ochepo, J. (2014). Stabilization of laterite soil using reclaimed asphalt pavement and sugarcane bagasse ash for pavement construction. Journal of Engineering Research, 2(4), 1–13.
DOI 10.7603/s40632-014-0021-0

Ofuyatan, O. M., Adeniyi, A. G., Ijie, D., Ighalo, J. O., & Oluwafemi, J. (2020). Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Construction and Building Materials, 256, 119403.
DOI 10.1016/j.conbuildmat.2020.119403

Okafor, F. O., & okonkwo, U. N. (2009). Effects of Rice Husk Ash on Some Geotechnical Properties of Lateritic Soil. Nigerian Journal of Technology, 28(1), 46–52

Olabanji, I. O., Oluyemi, E., & Ajayi, O. S. (2012). Metal analyses of ash derived alkalis from banana and plantain peels (Musa spp.) in soap making. African Journal of Biotechnology, 11(99), 16512-16518

Osinubi, K. J., Bafyau, V., & Eberemu, A. O. (2009). Bagasse Ash Stabilization of Lateritic Soil. Appropriate Technologies for Environmental Protection in the Developing World, 2009, 271–280.
DOI 10.1007/978-1-4020-9139-1_26

Oyebisi, S., Ede, A., Olutoge, F., & Omole, D. (2020). Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Construction and Building Materials, 256, 119390.
DOI 10.1016/j.conbuildmat.2020.119390

Oyetola, E. B. & Abdullahi, M. (2006). The use of rice husk ash in low-cost sandcrete block production. Leonardo Electronic Journal of Practices and Technologies, 8, 58–70

Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486.
DOI 10.1016/s0008-8846(03)00062-0

Pang, B., Zhou, Z., & Xu, H. (2015). Utilization of carbonated and granulated steel slag aggregate in concrete. Construction and Building Materials, 84, 454–467.
DOI 10.1016/j.conbuildmat.2015.03.008

Patel, K., Lad, V., Mistry, P., Patel, D., Patel, P., & Panchal, R. (2020). Soil Stabilization using Ground Granulated Blast Furnace Slag. International Journal of Innovative Research in Science, Engineering and Technology, 9(5), 2976–2980

Pathak, A. K., Pandey, V., Murari, K., & Singh, J. P. (2014). Soil Stabilisation Using Ground Granulated Blast Furnace Slag. Journal of Engineering Research and Applications, 4(5), 164-171

Paul, S., & Sarkar, D. (2023). Chemically Stabilized Laterite Soil Using Rice Husk Ash. Medicon Engineering Themes, 4(4), 31–40

Pazare, R., Yede, G., Lonare, A., Khawshi, A., Charmode, N., & Ingle, A. (2023). Use of Recycled Construction and Demolition Waste Material in Soil Stabilization. International Journal for Research in Applied Science and Engineering Technology, 11(5), 135–141.
DOI 10.22214/ijraset.2023.51412