an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

TEX2MAT – NEXT LEVEL TEXTILE RECYCLING WITH BIOCATALYSTS

  • Benjamin Piribauer - Department of Particle Technology, Recycling Technology and Life Cycle Analysis, Technische Universität Wien, Austria
  • Uta Jenull-Halver - Chair of Polymer Processing, Montanuniversität Leoben, Austria
  • Felice Quartinello - Department of Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Austria
  • Wolfgang Ipsmiller - Department of Particle Technology, Recycling Technology and Life Cycle Analysis, TU Wien, Technische Universität Wien, Austria
  • Thomas Laminger - Department of Particle Technology, Recycling Technology and Life Cycle Analysis, TU Wien, Technische Universität Wien, Austria
  • Daniel Koch - Department of Particle Technology, Recycling Technology and Life Cycle Analysis, TU Wien, Technische Universität Wien, Austria
  • Andreas Bartl - Department of Particle Technology, Recycling Technology and Life Cycle Analysis, TU Wien, Technische Universitat Wien, Austria

Share


Released under CC BY-NC-ND

Copyright: © 2020 CISA Publisher


Abstract

Achieving a circular economy for end-of-life textiles is one of the big challenges in the textile industry. Currently, after disposal, textiles often end up in landfills or in incineration plants. Over the last years, the textile industry exhibited high growth rates and the annual global fibre production is reaching 100 Million t. It also has to be considered that textile products are increasingly becoming more complex, to fulfill special functionality resulting in the use of multi-material textiles. However, these textiles are hard to recycle. The TEX2MAT project is a FFG (Austrian Research Promotion Agency) promoted project conducted by a consortium of 13 research institutions and private businesses that offers a solution. The goal was to develop an innovative process for the material recycling of selected multi-material textile streams. In multiple case studies, pre- and post-consumer cotton/polyester textiles from the Austrian SME sector were investigated to close the material cycle from raw material back to raw material. The case studies used a new approach involving the enzymatic hydrolysis of cellulose. This way cotton can be converted into glucose and polyester remains as the only polymer and is thus accessible for a rather easy recycling process. The obtained glucose can be used as raw material for different platform chemicals. The project team successfully demonstrated the functionality of the whole processing chain, by complete removal of the cotton from the textile, and weaving of new towels with the recycled polyester.

Keywords


Editorial History

  • Received: 21 Feb 2020
  • Revised: 14 Jul 2020
  • Accepted: 29 Jul 2020
  • Available online: 30 Nov 2020

References

Berger, W., Faulstich, H., Fischer, P., Heger, A., Jacobasch, H.-J., Mally, A., & Mikut, I. (1993). Textile Faserstoffe. Berlin, Heidelberg: Springer Berlin Heidelberg

Cirfs. (2016). Information on Man-made Fibres (52 ed.). Brussels: European Man-Made Fibre Organisation

Din. (2010). Textiles - Quantitative Chemical Analysis, DIN 1833-11. Deutsches Institut für Normung

Din. (2017). Kunststoffe - Dynamische Differenz-Thermoanalyse , DIN 11357-1. Deutsches Institut für Normung

European Parliament. (2018). DIRECTIVE (EU) 2018/851 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268.
DOI 10.1351/pac198759020257

Koch, D., Paul, M., Beisl, S., Friedl, A., & Mihalyi, B. (2020). Life cycle assessment of a lignin nanoparticle biorefinery: Decision support for its process development. Journal of Cleaner Production, 245.
DOI 10.1016/j.jclepro.2019.118760

Korolkow, J. (2015). Konsum, Bedarf und Wiederverwendung von Bekleidung und Textilien in Deutschland. Bundesverband Sekundärrohstoffe und Entsorgung e.V. Retrieved from https://www.bvse.de/images/pdf/Leitfaeden-Broschueren/150914_Textilstudie_2015.pdf

Kunal, A., & Amit, R. (2017). Blended Fibers Market Size By Product (Cotton/Polyester, Cotton/Polyester/Cellulose, Nylon/Wool, Elastane/Nylon/Cotton), By Application (Apparel, Home Furnishing, Technical) Industry Analysis Report, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2017 – 2024. Retrieved from https://www.gminsights.com/industry-analysis/blended-fibres-market

MacDonald, W. (2003). Handbook of thermoplastic polyesters, vols 1 and 2 S Fakirov Weinheim, Wiley-VCH, 2002 Vol 1 pp 753, ISBN 3-527-29790-1 Vol 2 pp 624, ISBN 3-527-30113-5. Polymer International, 52(5), 859-860.
DOI 10.1002/pi.1120

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428.
DOI 10.1021/ac60147a030

Novozymes A/S. (2019). Cellic CTec 3. Retrieved from http://s3.amazonaws.com/zanran_storage/bioenergy.novozymes.com/ContentPages/2546502386.pdf

Palmer, T. (2001). Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (Vol. 40): Horwood Publishing

Piribauer, B., & Bartl, A. (2019). Textile recycling processes, state of the art and current developments: A mini review. Waste Management & Research, 37(2), 112-119.
DOI 10.1177/0734242X18819277

Piribauer, B., Laminger, T., Ipsmiller, W., Koch, D., & Bartl, A. (2019). Assessment of Microplastics in the Environment – Fibres: The Disregarded Twin? Detritus, In Press(0).
DOI 10.31025/2611-4135/2019.13873

Ramsl, M. (Producer). (2019, 10.02.2020). Clusterland Award 2019 vergeben. Retrieved from https://www.kunststoff-cluster.at/news-presse/detail/news/clusterland-award-2019-vergeben/

Singhania, R., Adsul, M., Pandey, A., & Patel, A. K. (2017). Cellulases. In (pp. 73-101): Elsevier


oct
11