an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Ronei de Almeida - School of Chemistry, Federal University of Rio de Janeiro, Brazil
  • Juacyara Campos - School of Chemistry, Federal University of Rio de Janeiro, Brazil
  • Fábio de Almeida Oroski - School of Chemistry, Federal University of Rio de Janeiro, Brazil

DOI 10.31025/2611-4135/2020.13897

Released under CC BY-NC-ND

Copyright: © 2019 CISA Publisher

Editorial History

  • Received: 08 Jun 2019
  • Revised: 15 Dec 2019
  • Accepted: 13 Jan 2020
  • Available online: 29 Jan 2020


Leachate treatment is a major issue in the context of landfill management since solutions have not been yet developed, resulting in more satisfactory technical and economic results concerning leachate treatment. In this paper, the technical and economic factors concerning lime application and nanofiltration for the treatment of leachate from the Seropédica landfill (Rio de Janeiro State, Brazil) were evaluated. The results indicate that the application of 30 g lime L-1, under optimum conditions, followed by air stripping, was able to place the effluent within the ammonia nitrogen discharge standard imposed by local legislation. The use of nanofiltration produced a clear and colorless permeate and has proved to be very effective at removing all pollutants. Regarding cost estimates, considering a means leachate generation flow of 1000 m3, recovery of 60% and average permeate flux of 12 L m-2 h-1. The total cost per m3 of treated effluent was estimated in two scenarios, using different types of membrane and therefore different membrane costs per m2. Considering that the landfill would operate for 25 years and after closing, the leachate treatment station would maintain its activities for another 15 years, totaling 40 years, the cost to treat leachate would be of US$ 10.54 and US$ 11.33 m-3. In both evaluated scenarios, with regard to process operation costs, the percentage value relative to membrane exchange was emphasized. It is noteworthy that, a treated effluent at a lower cost to that currently presented by the landfill was obtained through the applied hybrid process.



Ahmed, F. N. and Christopher Q. (2012). Treatment of landfill leachate using membrane bioreactors: A review. Desalination, 287, 41-54.
DOI 10.1016/j.desal.2011.12.012

Amaral M. C. S., Pereira H. V., Nani E. and Lange L. C. (2015). Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process. Water Sci Technol, 72.2, 269-276.
DOI 10.2166/wst.2015.218

Amaral, M. C. S., Moravia, W. G., Lange, L. C., Rico, M. R., Magalhães, N. C., Ricci, B. C., Reis, B. G. (2016). Pilot aerobic membrane bioreactor and nanofiltration for municipal landfill leachate treatment. J. Environ. Sci. Health, Part A., 51:8, 640-649.
DOI 10.1080/10934529.2016.1159874

Amokrane, A., Comel, C., Veron, J. (1997). Landfill leachate pretreatment by coagulation-flocculation. Water Res., 31, 2775-2782.
DOI 10.1016/S0043-1354(97)00147-4

Amor, C., De Torres-Socías, E., Peres, J. A., Maldonado, M. I., Oller, I., Malato, S., Lucas, M. S. (2015). Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar Photo-Fenton processes. J. Hazard. Mater., 286, 261-268.
DOI 10.1016/j.jhazmat.2014.12.036

APHA/ AWWA/ WEF. Standard Methods for the Examination of Water and Wastewater, 22nd. USA, APHA, 2012

Aziz, H. A., Alias, S., Adlan, M. N., Faridah, Asaari, A. H., Zahari, M. S. (2007). Color removal from landfill leachate by coagulation and flocculation processes. Bioresour. Technol., 98, 218-220.
DOI 10.1016/j.biortech.2005.11.013

Baker R. W. (2012). Membrane Technology and Applications. John Wiley & Sons, United Kingdom, 3rd ed., 575 p

Calabrò, P. S., Gentili, E., Meoni, C., ORSI, S., Komilis, D. (2018). Effect of the recirculation of a reverse osmosis concentrate on leachate generation: A case study in an Italian landfill. Waste Manage. 76, 643-651.
DOI 10.1016/j.wasman.2018.03.007

Campos, J. C., Moura, D., Costa, A. P., Yokoyama, L., Araujo, F. V. F., Cammarota, M. C. (2013). Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate. J. Environ. Sci. Health., Part A., 48, 1105-1113.
DOI 10.1080/10934529.2013.774658

Chaudhari L. B. and Murthy Z. V. P. (2010). Treatment of landfill leachates by nanofiltration. J Environ Manage., 91, 1209-1217.
DOI 10.1016/j.jenvman.2010.01.007

Chen G., Grasel, P., Millington, G., Hallas J., Ahmad H., Tawfiq, K., 2017. Chloride removal from landfill leachate by the ultra-high lime with aluminum process. J Urban Environ Eng 11:1, 3-8.
DOI 10.4090/juee.2017.v11n1.003008

Cingolani, D., Fatone, F., Frison, N., Spinelli M., Eusebi A. L. (2018). Pilot-scale multi-stage reverse osmosis (DT-RO) for water recovery from landfill leachate. Waste Manage., 76, 566-574.
DOI 10.1016/j.wasman.2018.03.014

Costa A. M., Alfaia R. G. S. and Campos J. C. (2019). Landfill leachate treatment in Brazil – An overview. J Environ Manage, 232, 110-116.
DOI 10.1016/j.jenvman.2018.11.006

De Almeida, R., Costa, A. M., Oroski, F. A., Campos, J. C. (2019). Evaluation of coagulation-flocculation and nanofiltration processes in landfill leachate treatment, J. Environ. Sci. Health., Part A 54(11), 1091-1098.
DOI 10.1080/10934529.2019.1631093

Ehrig, H.-J., & Robinson, H., 2010. Landfilling: Leachate Treatment. Solid Waste Technology & Management, 858–897.
DOI 10.1002/9780470666883.ch54

El-Gohary, F.A., Khater, M., Gamal Kamel, M. (2013). Pretreatment of landfill leachate by ammonia stripping. J. Appl. Sci. Res., 9, 3905–3913

Golob, V., Vinder, A., Simonic, M. (2005). Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes and Pigments, 67(2), 93–97.
DOI 10.1016/j.dyepig.2004.11.003

Guerra K. and Pellegrino J. (2012). Investigation of Low-Pressure Membrane Performance, Cleaning, and Economics Using a Techno-Economic Modeling Approach. U.S. Department of Interior, 127

Ismail, I. M., Fawzy, A. S., Abdel-Monem, N. M., Mahmoud, M. H., El-Halwany, M. A. (2012). Combined coagulation flocculation pre treatment unit for municipal wastewater. Journal of Advanced Research, 3(4), 331–336.
DOI 10.1016/j.jare.2011.10.004

Lima L. S. M. S., Almeida R., Quintaes B. R., Bila D. M. and Campos J. C. (2017). Evaluation of humic substances removal from leachates originating from solid waste landfills in Rio de Janeiro State, Brazil. J. Environ. Sci. Health, Part A., 52, 828-836.
DOI 10.1080/10934529.2017.1312182

Liu Z., Wu W., Shi P., Guo J. and Cheng J. (2015). Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation. Waste Manage., 41, 111-118.
DOI 10.1016/j.wasman.2015.03.044

Liu, B., Giannis, A., Zhang, J., Chang, V. W.-C., & Wang, J.-Y. (2014). Air stripping process for ammonia recovery from source-separated urine: modeling and optimization. J. Chem. Technol. Biotechnol., 90 (12), 2208–2217.
DOI 10.1002/jctb.4535

Metcalf, E., Eddy, H., Tchobanoglous, G., Burton, F.L., Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse, fourth ed. McGraw-Hill.
DOI 10.1016/0309-1708(80) 90067e6

Postacchini L., Ciarapica, F. E., Bilivacqua, M. (2018). Environmental assessment of a landfill leachate treatment plant: Impacts and research for more sustainable chemical alternatives. J Clean Prod., 183, 1021-1033.
DOI 10.1016/j.jclepro.2018.02.219

Renou S., Poulain S., Givaudan J. G. and Moulin P. (2008). Treatment process adapted to stabilized leachates: Lime precipitation–prefiltration–reverse osmosis. J. Membr. Sci. 313, 9-22.
DOI 10.1016/j.memsci.2007.11.023

Renou, S., Poulain S., Givaudan J.G., Sahut, C., Moulin P. (2009). Lime treatment of stabilized leachates. Water Sci. Technol., 59:4, 673-685.
DOI 10.2166/wst.2009.014

Robinson, A.H., 2005. Landfill Leachate Treatment, 6–12

Rodrigues, F. S. F., Bila, D. M., Campos, J. C., Sant’anna Jr, G. L., Dezotti M., 2009. Sequential treatment of an old-landfill leachate. Int. J. Environ. Waste Manage. 4, 445-456.
DOI 10.1504/IJEWM.2009.027408

Rukapan, W., Khananthai, B., Chiemchaisri, C., Chiemchaisri, W., 2012. Short- and long-term fouling characteristics of reverse osmosis membrane at full scale leachate treatment plant. Water Sci. Technol. 65 (1), 127–134.
DOI 10.2166/wst.2011.844

Salehi E., Madaeni S. S., Shamsabadi A. A. and Laki S., 2014. Applicability of ceramic membrane filters in the pretreatment of coke-contaminated petrochemical wastewater: Economic feasibility study. Cerami Inte. 40, 4805-4810.
DOI 10.1016/j.ceramint.2013.09.029

Schiopu A. M., Piuleac G. C., Cojocaru C., Apostol I., Mămăligă I. and Gavrilescu M. (2012). Reducing environmental risk of landfills: leachate treatment by reverse osmosis. Environ. Eng. Manage. j. 11, 2319–2331.
DOI 10.30638/eemj.2012.286

Serdarevic, A. (2018). Landfill Leachate Management – Control and Treatment. Advanced Technologies, Systems, and Applications II, Lecture Notes in Networks and Systems 28,
DOI 10.1007/978-3-319-71321-2_54

Silva, L.C., Reis, H. S., Afonso, B. W. Avaliação econômica de diferentes processos para remoção de amônia de lixiviados de aterros sanitários. Trabalho de Conclusão de Curso em Engenharia Química. 2011. 79 f. Escola de Química, UFRJ, RJ, 2011. (In Portuguese)

Singh N. and Cheryan M. (1998). Process Design and Economic Analysis of a Ceramic Membrane System for Microfiltration of Corn Starch Hydrolysate. J Food Eng. 38, 57-67.
DOI 10.1016/S0260-8774(98)00103-4

Sir M., Podhola M., Patocka T., Honzajkova Z., Kocurek P., Kubal M. and Kuras M. (2012). The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate. J Hazard Mater., 207-208, 86-90.
DOI 10.1016/j.jhazmat.2011.08.079

Smol, M., Włodarczyk-Makuła, M. (2016). Effectiveness in the removal of organic compounds from municipal landfill leachate in integrated membrane systems: coagulation – NF/RO. Polycycl. Aromat. Compd., 37, 456-474.
DOI 10.1080/10406638.2016.1138971

Talalaj, I. A and Biedka, P. (2015). Impact of concentrated leachate recirculation on effectivenessof leachate treatment by reverse osmosis. Ecol. Eng., 85, 185-192.
DOI 10.1016/j.ecoleng.2015.10.002

Talalaj, I. A., Biedka, P., Bartkowska I. (2019). Treatment of landfill leachates with biological pretreatments and reverse osmosis. Environmental Chemistry Letters.
DOI 10.1007/s10311-019-00860-6

Tavares C. R. G. and Brião V. B. (2012). Ultrafiltration of effluents from a dairy industry for nutrient recovery: effect of pressure and tangential velocity. J. Food Technol., 15:4, 352-362.
DOI 10.1590/S1981-67232012005000028

Yao, P. (2013). Perspectives on technology for landfill leachate treatment. Arabian J. Chem.
DOI 10.1016/j.arabjc.2013.09.031

Youcai, Z., & Ziyang, L. (2017). General Structure of Sanitary Landfill. Pollution Control and Resource Recovery, 1–10.
DOI 10.1016/b978-0-12-811867-2.00001-7

Zawierucha I., Kozlowski C., Malina G. (2013). Removal of toxic metals ions from landfill leachate by complementary sorption and transport across polymer inclusion membranes. Waste Manage. 33, 2129-2136.
DOI 10.1016/j.wasman.2012.12.015

Zhang L., Lavagnoloc M. C., Baid H., Pivato A., Raga R., Yue D. (2019). Environmental and economic assessment of leachate concentrate treatment technologies using analytic hierarchy process. Resour Conserv Recy., 141, 474-480.
DOI 10.1016/j.resconrec.2018.11.007