an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

DESIGN OF LANDFILLS AND THE UTILIZATION OF WASTES AS SUSTAINABLE LINER MATERIALS: A MINI-REVIEW

  • Victor Eloghosa Ajayi - Department of Civil Engineering, Covenant University, Nigeria
  • Promise Sokari Epelle - Department of Civil Engineering , Covenant University, Nigeria
  • Isaac Ibukun Akinwumi - Department of Civil Engineering, Covenant University, Nigeria

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Abstract

Modern landfills, designed to minimize environmental and health risks, play a crucial role in solid waste disposal. Poorly managed municipal solid waste facilities have severe environmental consequences, prompting intervention and remediation. Landfill construction is not enough; regular maintenance is essential to prevent harm. Landfills' historical evolution reflects societal needs, technological advancements, and environmental awareness. The 20th century saw engineered landfills with practices like compaction, daily covering, and leachate collection. Despite progress in recycling and incineration, landfills remain dominant, posing challenges like methane emissions, leachate contamination, and land use. Research emphasizes integrating landfills with recycling, composting, and waste-to-energy technologies for a sustainable future. Engineered landfills are advantageous over dumpsites, in terms of groundwater and air protection, odor control, energy generation, and job creation. Seismic analysis of landfills addresses deformation and seismic reactivity, emphasizing proper liner construction to reduce seismic impact. Leachate, a potential environmental hazard, requires careful management with effective liners to prevent groundwater and soil pollution. Various materials, including fly ash, paper mill sludge, waste foundry sand, recycled concrete aggregate, rice husk ash, and plastic waste, are reviewed for landfill liners. Research shows these materials can offer effective barriers, reducing environmental impact and promoting sustainability. Future studies should continue exploring alternative materials, considering factors like strength, hydraulic conductivity, and environmental protection.

Keywords


Editorial History

  • Received: 10 Dec 2023
  • Revised: 07 Apr 2024
  • Accepted: 19 Apr 2024
  • Available online: 02 Sep 2024

References

Abbaspour, M., Aflaki, E., & Moghadas Nejad, F. (2019). Reuse of waste tire textile fibers as soil reinforcement. Journal of Cleaner Production, 207, 1059–1071.
DOI 10.1016/j.jclepro.2018.09.253

Abd-Aziz, N. H., Alias, S., Bashar, N. A. M., Ahmad, A., Amir, A., Abdul-Talib, S., & Tay, C. C. (2019). Shear strength of food packaging plastic wastes as liner material. Journal of Physics: Conference Series, 1349(1), 012023.
DOI 10.1088/1742-6596/1349/1/012023

Abichou, T., Benson, C. H., & Edil, T. B. (2000). Foundry Green Sands as Hydraulic Barriers: Laboratory Study. Journal of Geotechnical and Geoenvironmental Engineering, 126(12), 1174–1183.
DOI 10.1061/(ASCE)1090-0241(2000)126:12(1174)

Adeyemo, K. A., Yunusa, G. H., Ishola, K., Bello, A. A., & Adewale, S. A. (2022). Cassava peel ash modified black cotton soil as material for hydraulic barriers in municipal solid waste containment facility. Cleaner Waste Systems, 3, 100045.
DOI 10.1016/j.clwas.2022.100045

Ahmad, J., Zhou, Z., Martínez-García, R., Vatin, N. I., de-Prado-Gil, J., & El-Shorbagy, M. A. (2022). Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials, 15(7), 2365.
DOI 10.3390/ma15072365

Akinwumi, I. I., Domo-Spiff, A. H., & Salami, A. (2019). Marine plastic pollution and affordable housing challenge: Shredded waste plastic stabilized soil for producing compressed earth bricks. Case Studies in Construction Materials, 11, e00241.
DOI 10.1016/j.cscm.2019.e00241

Albright, W. H., Benson, C. H., Gee, G. W., Abichou, T., Tyler, S. W., & Rock, S. A. (2006). Field Performance of Three Compacted Clay Landfill Covers. Vadose Zone Journal, 5(4), 1157–1171.
DOI 10.2136/vzj2005.0134

Aldaeef, A. A., & Rayhani, M. T. (2014). Hydraulic performance of Compacted Clay Liners (CCLs) under combined temperature and leachate exposures. Waste Management, 34(12), 2548–2560.
DOI 10.1016/j.wasman.2014.08.007

Aldaeef, A. A., & Rayhani, M. T. (2015). Hydraulic performance of compacted clay liners under simulated daily thermal cycles. Journal of Environmental Management, 162, 171–178.
DOI 10.1016/j.jenvman.2015.07.036

Alves, B. (2024, January 10). Topic: Global plastic waste. Statista. Retrieved April 1, 2024. https://www.statista.com/topics/5401/global-plastic-waste/#topicOverview

Amina, S. M., & Rani, V. (2017). Evaluation of Fly Ash as Amended Liner and the Effect of Pore Fluids. International Research Journal of Engineering and Technology, 4(5), 191–194

Balkaya, M. (2019). Assessment of the geotechnical aspect of the use of paper mill sludge as landfill cover and bottom liner material. DESALINATION AND WATER TREATMENT, 172, 70–77.
DOI 10.5004/dwt.2019.25134

Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A., Enabulele, D. O., & Nworgu, A. T. (2021). Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 283, 124581.
DOI 10.1016/j.jclepro.2020.124581

Budihardjo, M. A., Muhammad, F. I., Rizaldianto, A. R., Sutrisno, E., & Wardhana, I. W. (2019). Stability Performance of the Mixture of Bentonite and Zeolite as Landfill Liner. E3S Web of Conferences, 125, 07012.
DOI 10.1051/e3sconf/201912507012

Budihardjo, M., Syafrudin, S., Priyambada, I., & Ramadan, B. (2021). Hydraulic Stability of Fly Ash-Bentonite Mixtures in Landfill Containment System. Journal of Ecological Engineering, 22(7), 132–141.
DOI 10.12911/22998993/139064

Cherian, S. K., & Abraham, E. J. K. (2020). Suitability of Waste Foundry Sand with Fly Ash and Lime as Landfill Liner. International Research Journal of Engineering and Technology, 7(5), 6964–6967

Cokca, E., & Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. Waste Management, 24(2), 153–164.
DOI 10.1016/j.wasman.2003.10.004

Commercial Zone Products (2020, July 9). A Brief History of Waste Management. Retrieved January 26, 2024. https://www.commercialzone.com/a-brief-history-of-waste-managementDaniel, D. E. (1993). Case Histories of Compacted Clay Liners and Covers for Waste Disposal Facilities. International Conference on Case Histories in Geotechnical Engineering, 2, 1407–1425

Danso, H. (2017). Properties of coconut, oil palm and bagasse fibres: as potential building materials. Procedia Engineering, 200, 1–9

Dezfouli, A. A. (2020). Effect of Eggshell Powder Application on the Early and Hardened Properties of Concrete. Journal of Civil Engineering and Materials Application, 4(4), 209-221.
DOI 10.22034/jcema.2020.241853.1036

Du, Y.-J., Shen, S.-L., Liu, S.-Y., & Hayashi, S. (2009). Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems. Geotextiles and Geomembranes, 27(3), 232–239.
DOI 10.1016/j.geotexmem.2008.11.007

Eberemu, A. O. (2013). Evaluation of bagasse ash treated lateritic soil as a potential barrier material in waste containment application. Acta Geotechnica, 8(4), 407–421.
DOI 10.1007/s11440-012-0204-5

Edeh, J. E., Eberemu, A. O., & Arigi, A. S. D. (2012). Reclaimed Asphalt Pavement Stabilized Using Crushed Concrete Waste as Highway Pavement Material. Advances in Civil Engineering Materials, 1(1), 20120005.
DOI 10.1520/ACEM20120005

Faubert, P., Barnabé, S., Bouchard, S., Côté, R., & Villeneuve, C. (2016). Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resources, Conservation and Recycling, 108, 107–133.
DOI 10.1016/j.resconrec.2016.01.007

Feng, S.-J., Chang, J.-Y., & Chen, H.-X. (2018). Seismic analysis of landfill considering the effect of GM-GCL interface within liner. Soil Dynamics and Earthquake Engineering, 107, 152–163.
DOI 10.1016/j.soildyn.2018.01.025

Galvão, T. C., Kaya, A.,Mahler, C., Ören A. H., & Yükselen, Y. (2008). Innovative Technology for Liners. Soil and Sediment Contamination, 17(4), 411-424

Garg, A., Reddy, N. G., Huang, H., Buragohain, P., & Kushvaha, V. (2020). Modelling contaminant transport in fly ash–bentonite composite landfill liner: Mechanism of different types of ions. Scientific Reports, 10(1), 11330.
DOI 10.1038/s41598-020-68198-6

Gaspar, F., Bakatovich, A., Davydenko, N., & Joshi, A. (2020). Building insulation materials based on agricultural wastes. Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, 149–170.
DOI 10.1016/B978-0-12-819481-2.00008-8

Gheni, A. A., Alghazali, H. H., ElGawady, M. A., Myers, J. J., & Feys, D. (2019). Durability properties of cleaner cement mortar with by-products of tire recycling. Journal of Cleaner Production, 213, 1135–1146.
DOI 10.1016/j.jclepro.2018.12.260

Ghorpade, V. G. (2012). Effect of Wood Waste Ash on the Strength Characteristics of Concrete. Nature Environment and Pollution Technology, 11(1), 121-124

Golawska, A. (2024, February 29). Tire Waste Statistics You Need To Know. Contec. Retrieved April 1, 2024. https://contec.tech/tire-waste-statistics-need-to-know/#:~:text=Globally%2C%20an%20estimated%20one%20billion

Hughes, K. L., Christy, A. D., & Heimlich, J. E. (2005). Landfill Types and Liner Systems. Ohio State Fact Sheet, 1-4

Igbinomwanhia, D. I. (2012). Characterization of commercial solid waste in Benin metropolis, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 3(5), 834-838

Ikpe, A. E., Owunna, I. B., & Agho, N. (2019). Physiochemical analysis of municipal solid waste leachate from open dumpsites in Benin City metropolis. Journal of Applied Sciences and Environmental Management, 23(1), 165–171

Ikpe, A., Ndon, A.-I. E., & Etim, P. (2020). Assessment of the waste management system and its implication in Benin City metropolis, Nigeria. Journal of Applied Research on Industrial Engineering, 7(1).
DOI 10.22105/jarie.2020.215049.1121

International Institute of Tropical Agriculture (IITA). (2022). Cassava Peels for Animal Feed Production. Retrieved April 1, 2024

IPCC (2021). Intergovernmental Panel on Climate Change. Sixth Assessment Report (AR6) - Climate Change 2021: The Physical Science Basis

Ireaja, N. A., Okeke, O. C., & Opara, A. I. (2018). Sanitary Landfills: Geological and Environmental Factors that Influence Their Siting, Operation and Management. IIARD International Journal of Geography and Environmental Management, 4, 1-9

Jishnu, P. S., & Mohini, M. B. (2020). Study on Site Soil Treated with Bagasse Ash as a Liner Material. International Research Journal of Engineering and Technology, 7(2), 1345–1348

Kartika, S., Asiyanthi, L. A., Irwan, R. R., & Hidayat, A. (2022). Strength Behaviour of Sugarcane Bagasse Ash Treated Sewage Sludge-Soil Mixture. IOP Conference Series: Earth and Environmental Science, 1117(1), 012049.
DOI 10.1088/1755-1315/1117/1/012049

Kaushik, D., & Singh, S. K. (2021). Use of coir fiber and analysis of geotechnical properties of soil. Materials Today: Proceedings, 47, 4418–4422.
DOI 10.1016/j.matpr.2021.05.255

Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. In Openknowledge: Worldbank. Retrieved January 26, 2024, from https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a

Rowe, R. K., Reinert, J., Li, Y., & Awad, R. (2023). The need to consider the service life of all components of a modern MSW landfill liner system. Waste Management, 161, 43–51.
DOI 10.1016/j.wasman.2023.02.004

Kuokkanen, T., Nurmesniemi, H., Pöykiö, R., Kujala, K., Kaakinen, J., & Kuokkanen, M. (2008). Chemical and leaching properties of paper mill sludge. Chemical Speciation & Bioavailability, 20(2), 111–122.
DOI 10.3184/095422908X324480

Li, L., Lin, C., & Zhang, Z. (2017). Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Materials & Design, 114, 73–82.
DOI 10.1016/j.matdes.2016.10.046

Likon, M., Černec, F., Saarela, J., Zimmie, T. F., & Zule, J. (2009). Use of paper mill sludge for absorption of hydrophobic substances. 2nd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 526–533

Market Data Forecast. (2023). Rice Husk Ash Market Size (2023–2028). Retrieved April 1, 2024. https://www.marketdataforecast.com/market-reports/rice-husk-ash-market

Martínez-García, R., Jagadesh, P., Zaid, O., Șerbănoiu, A. A., Fraile-Fernández, F. J., De Prado-Gil, J., Qaidi, S. M. A., & Grădinaru, C. M. (2022). The Present State of the Use of Waste Wood Ash as an Eco-Efficient Construction Material: A Review. Materials, 15(15), 5349.
DOI 10.3390/ma15155349

Melchior, S., Volker Sokollek, Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 Years of In Situ Performance Testing of Landfill Cover Systems in Germany. Journal of Environmental Engineering, 136(8), 815–823.
DOI 10.1061/(asce)ee.1943-7870.0000200

Mishra, A. K., & Ravindra, V. (2015). On the Utilization of Fly Ash and Cement Mixtures as a Landfill Liner Material. International Journal of Geosynthetics and Ground Engineering, 1(2), 17.
DOI 10.1007/s40891-015-0019-1

Mollamahmutoğlu, M., & Yilmaz, Y. (2001). Potential use of fly ash and bentonite mixture as liner or cover at waste disposal areas. Environmental Geology, 40(11–12), 1316–1324.
DOI 10.1007/s002540100355

Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119151.
DOI 10.1016/j.jclepro.2019.119151

Ochepo, J. (2020). Effect of Rice Husk Ash on the Hydraulic Conductivity and Unconfined Compressive Strength of Compacted Bentonite Enhanced Waste Foundry Sand. LAUTECH Journal of Civil and Environmental Studies, 5(1), 85–96.
DOI 10.36108/laujoces/0202/50(0190)

Ofuyatan, O. M., Adeniyi, A. G., Ijie, D., Ighalo, J. O., & Oluwafemi, J. (2020). Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Construction and Building Materials, 256, 119403.
DOI 10.1016/j.conbuildmat.2020.119403

Olaoye, R. A., Afolayan, O. D., Oladeji, V. O., & Sani, R. O. (2019). Influence of bentonite on clayey soil as a landfill baseliner materials. IOP Conference Series: Materials Science and Engineering, 640(1), 012107.
DOI 10.1088/1757- 899X/640/1/012107

Oluremi, J. R., Eberemu, A. O., Ijimdiya, S. T., & Osinubi, K. J. (2019). Lateritic Soil Treated with Waste Wood Ash As Liner in Landfill Construction. Environmental and Engineering Geoscience, 25(2), 127–139.
DOI 10.2113/eeg-2023

Onyelowe, K. C., Obianyo, I. I., Onwualu, A. P., Onyia, M. E., & Moses, C. (2021). Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction. Cleaner Materials, 1, 100007.
DOI 10.1016/j.clema.2021.100007

Onyelowe, K. C., Ebid, A. M., De Jesús Arrieta Baldovino, J., & Onyia, M. E. (2022). Hydraulic conductivity predictive model of RHA-ameliorated laterite for solving landfill liner leachate, soil and water contamination and carbon emission problems. International Journal of Low-Carbon Technologies, 17, 1134–1144.
DOI 10.1093/ijlct/ctac077

Oyebisi, S., Ede, A., Olutoge, F., & Omole, D. (2020). Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Construction and Building Materials, 256, 119390.
DOI 10.1016/j.conbuildmat.2020.119390

Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732–1739

Parameswari, K., Majid Salim Al Aamri, A., Gopalakrishnan, K., Arunachalam, S., Ali Said Al Alawi, A., & Sivasakthivel, T. (2021). Sustainable landfill design for effective municipal solid waste management for resource and energy recovery. Materials Today: Proceedings.
DOI 10.1016/j.matpr.2021.04.528

Patil, M. R., Quadri, S. S., & Lakshmikantha, H. (2009). Alternative Materials for Landfill Liners and Covers. IGC 2009, 301-304

Puspita, A. S., Budihardjo, M. A., & Samadikun, B. P. (2023). Evaluating coconut fiber and fly ash composites for use in landfill retention layers. Global NEST Journal, 25(4), 1-7

Rani, S. R., & Chandra, S. V. (2017). Suitability of Soft Clay as Clay Liner based on Clay-Leachate Interaction Studies. IOSR Journal of Mechanical and Civil Engineering, 14(3), 115–123.
DOI 10.9790/1684-140305115123

Reddy, P. S., Reddy, N. G., Serjun, V. Z., Mohanty, B., Das, S. K., Reddy, K. R., & Rao, B. H. (2020). Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs. Waste and Biomass Valorization, 12(3), 1185–1217.
DOI 10.1007/s12649-020-01089-z

Reddy, N. G., Vidya, A., & Sri Mullapudi, R. (2022). Review of the Utilization of Plastic Wastes as a Resource Material in Civil Engineering Infrastructure Applications. Journal of Hazardous, Toxic, and Radioactive Waste, 26(4), 03122004.
DOI 10.1061/(ASCE)HZ.2153-5515.0000717

Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.
DOI 10.1016/j.jhazmat.2007.09.077

Rihn, A. (2021, December 2). A brief history of garbage and the future of waste generation. In Roadrunner Recycling. Retrieved January 26, 2024, from https://www.roadrunnerwm.com/blog/history-of-garbage

Safari, E., Jalili Ghazizade, M., Abduli, M. A., & Gatmiri, B. (2014). Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover. Waste Management, 34(8), 1408–1415.
DOI 10.1016/j.wasman.2014.03.029

Sathiparan, N., Anburuvel, A., Selvam, V. V., & Vithurshan, P. A. (2023). Potential use of groundnut shell ash in sustainable stabilized earth blocks. Construction and Building Materials, 393, 132058.
DOI 10.1016/j.conbuildmat.2023.132058

Shahbandeh, M. (2024, February 6). Leading sugar cane producers worldwide in 2022, based on production volume (in million metric tons). Statista. Retrieved March 31, 2024. https://www.statista.com/statistics/267865/principal-sugar-cane-producers-worldwide/

Shu, S., Zhu, W., & Shi, J. (2019). A new simplified method to calculate breakthrough time of municipal solid waste landfill liners. Journal of Cleaner Production, 219, 649–654.
DOI 10.1016/j.jclepro.2019.02.050

Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling, 67, 27–33.
DOI 10.1016/j.resconrec.2012.07.004

Solomon, A., & Poulose, E. (2018). A Comprehensive Review on Landfill Liner. International Research Journal of Engineering and Technology, 5(11), 621-628

Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292.
DOI 10.1016/j.conbuildmat.2018.03.240

Tamunobereton-ari, I., Omubo-Pepple, V. B., & Briggs-Kamara, M. A. (2012). The Impact of Municipal Solid Waste Landfill on the Environment and Public Health in Port Harcourt and Its’ Environs, Rivers State, Nigeria. Trends in Advanced Science and Engineering, 3(1), 49-57

The Council for Scientific and Industrial Research (2000). Guidelines for Human Settlement Planning and Design. CSIR Building Construction Technology 2.
DOI 10.1108/eb045383

Thomas, B. S., & Gupta, R. C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86–92.
DOI 10.1016/j.jclepro.2015.11.019

Thomas, S. A., & Thomas, S. (2019). Characteristic Study on Liner Properties Using Paper Mill Sludge and Sepiolite. Journal of Emerging Technologies and Innovative Research, 6(5), 391–395

Tiza, M. T., & Iorver, V. (2016). A review of literature on effect of agricultural solid waste on stabilization of expansive soil. International Journal for Innovative Research in Multidisciplinary Field, 2(7),121–132

Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Npj Climate and Atmospheric Science, 2(35).
DOI 10.1038/s41612-019-0093-5

Ukwaba, S. I., Ikpe, A. E., & Orhorhoro, E. K. (2018). Adoption of a Landfill System in Nigeria and the Role of Municipal Solid Waste Segregation on its Performance. Nigerian Research Journal of Engineering and Environmental Sciences, 3(1), 280-286

United Nations. (2015). The 17 Sustainable Development Goals. United Nations. Retrieved April 1, 2024. https://sdgs.un.org/goals

Vathani, T., & Logeshwari, J. (2023). A novel approach to utilize recycled concrete aggregates as landfill liner. Waste Management Bulletin, 1(1), 39–48.
DOI 10.1016/j.wmb.2023.02.001

Vishnupriya, A., & Rajagopalan, V. (2022). Comparative Performance of Compacted Clay Liner (CCL) and Geosynthetic Clay Liner (GCL). Journal of Bioanalytical Methods and Techniques, 2(1), 103

Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal, 9(3), 193–200.
DOI 10.1016/j.hbrcj.2013.08.007

Wikipedia Contributors. (2024, January 22). Landfill. In Wikipedia, The Free Encyclopedia. Retrieved January 26, 2024, from https://en.wikipedia.org/wiki/Landfill

Xu, R., Liu, Y., Li, X., Yao, G., Xu, Y., & She, K. (2023). Research on leakage environmental risk assessment and risk prevention and control measures in the long-term landfill process of ultra-alkaline fly ash. Waste Management, 172, 320–325.
DOI 10.1016/j.wasman.2023.10.022

Yadav, V. K., Amari, A., Gacem, A., Elboughdiri, N., Eltayeb, L. B., & Fulekar, M. H. (2023). Treatment of Fly-Ash-Contaminated Wastewater Loaded with Heavy Metals by Using Fly-Ash-Synthesized Iron Oxide Nanoparticles. Water, 15(5), 908.
DOI 10.3390/w15050908