Released under CC BY-NC-ND
Copyright: © 2023 CISA Publisher
Abbaspour, M., Aflaki, E., & Moghadas Nejad, F. (2019). Reuse of waste tire textile fibers as soil reinforcement. Journal of Cleaner Production, 207, 1059–1071.
DOI 10.1016/j.jclepro.2018.09.253
Abd-Aziz, N. H., Alias, S., Bashar, N. A. M., Ahmad, A., Amir, A., Abdul-Talib, S., & Tay, C. C. (2019). Shear strength of food packaging plastic wastes as liner material. Journal of Physics: Conference Series, 1349(1), 012023.
DOI 10.1088/1742-6596/1349/1/012023
Abichou, T., Benson, C. H., & Edil, T. B. (2000). Foundry Green Sands as Hydraulic Barriers: Laboratory Study. Journal of Geotechnical and Geoenvironmental Engineering, 126(12), 1174–1183.
DOI 10.1061/(ASCE)1090-0241(2000)126:12(1174)
Adeyemo, K. A., Yunusa, G. H., Ishola, K., Bello, A. A., & Adewale, S. A. (2022). Cassava peel ash modified black cotton soil as material for hydraulic barriers in municipal solid waste containment facility. Cleaner Waste Systems, 3, 100045.
DOI 10.1016/j.clwas.2022.100045
Ahmad, J., Zhou, Z., Martínez-García, R., Vatin, N. I., de-Prado-Gil, J., & El-Shorbagy, M. A. (2022). Waste Foundry Sand in Concrete Production Instead of Natural River Sand: A Review. Materials, 15(7), 2365.
DOI 10.3390/ma15072365
Akinwumi, I. I., Domo-Spiff, A. H., & Salami, A. (2019). Marine plastic pollution and affordable housing challenge: Shredded waste plastic stabilized soil for producing compressed earth bricks. Case Studies in Construction Materials, 11, e00241.
DOI 10.1016/j.cscm.2019.e00241
Albright, W. H., Benson, C. H., Gee, G. W., Abichou, T., Tyler, S. W., & Rock, S. A. (2006). Field Performance of Three Compacted Clay Landfill Covers. Vadose Zone Journal, 5(4), 1157–1171.
DOI 10.2136/vzj2005.0134
Aldaeef, A. A., & Rayhani, M. T. (2014). Hydraulic performance of Compacted Clay Liners (CCLs) under combined temperature and leachate exposures. Waste Management, 34(12), 2548–2560.
DOI 10.1016/j.wasman.2014.08.007
Aldaeef, A. A., & Rayhani, M. T. (2015). Hydraulic performance of compacted clay liners under simulated daily thermal cycles. Journal of Environmental Management, 162, 171–178.
DOI 10.1016/j.jenvman.2015.07.036
Alves, B. (2024, January 10). Topic: Global plastic waste. Statista. Retrieved April 1, 2024. https://www.statista.com/topics/5401/global-plastic-waste/#topicOverview
Amina, S. M., & Rani, V. (2017). Evaluation of Fly Ash as Amended Liner and the Effect of Pore Fluids. International Research Journal of Engineering and Technology, 4(5), 191–194
Balkaya, M. (2019). Assessment of the geotechnical aspect of the use of paper mill sludge as landfill cover and bottom liner material. DESALINATION AND WATER TREATMENT, 172, 70–77.
DOI 10.5004/dwt.2019.25134
Bamigboye, G. O., Bassey, D. E., Olukanni, D. O., Ngene, B. U., Adegoke, D., Odetoyan, A. O., Kareem, M. A., Enabulele, D. O., & Nworgu, A. T. (2021). Waste materials in highway applications: An overview on generation and utilization implications on sustainability. Journal of Cleaner Production, 283, 124581.
DOI 10.1016/j.jclepro.2020.124581
Budihardjo, M. A., Muhammad, F. I., Rizaldianto, A. R., Sutrisno, E., & Wardhana, I. W. (2019). Stability Performance of the Mixture of Bentonite and Zeolite as Landfill Liner. E3S Web of Conferences, 125, 07012.
DOI 10.1051/e3sconf/201912507012
Budihardjo, M., Syafrudin, S., Priyambada, I., & Ramadan, B. (2021). Hydraulic Stability of Fly Ash-Bentonite Mixtures in Landfill Containment System. Journal of Ecological Engineering, 22(7), 132–141.
DOI 10.12911/22998993/139064
Cherian, S. K., & Abraham, E. J. K. (2020). Suitability of Waste Foundry Sand with Fly Ash and Lime as Landfill Liner. International Research Journal of Engineering and Technology, 7(5), 6964–6967
Cokca, E., & Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. Waste Management, 24(2), 153–164.
DOI 10.1016/j.wasman.2003.10.004
Commercial Zone Products (2020, July 9). A Brief History of Waste Management. Retrieved January 26, 2024. https://www.commercialzone.com/a-brief-history-of-waste-managementDaniel, D. E. (1993). Case Histories of Compacted Clay Liners and Covers for Waste Disposal Facilities. International Conference on Case Histories in Geotechnical Engineering, 2, 1407–1425
Danso, H. (2017). Properties of coconut, oil palm and bagasse fibres: as potential building materials. Procedia Engineering, 200, 1–9
Dezfouli, A. A. (2020). Effect of Eggshell Powder Application on the Early and Hardened Properties of Concrete. Journal of Civil Engineering and Materials Application, 4(4), 209-221.
DOI 10.22034/jcema.2020.241853.1036
Du, Y.-J., Shen, S.-L., Liu, S.-Y., & Hayashi, S. (2009). Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems. Geotextiles and Geomembranes, 27(3), 232–239.
DOI 10.1016/j.geotexmem.2008.11.007
Eberemu, A. O. (2013). Evaluation of bagasse ash treated lateritic soil as a potential barrier material in waste containment application. Acta Geotechnica, 8(4), 407–421.
DOI 10.1007/s11440-012-0204-5
Edeh, J. E., Eberemu, A. O., & Arigi, A. S. D. (2012). Reclaimed Asphalt Pavement Stabilized Using Crushed Concrete Waste as Highway Pavement Material. Advances in Civil Engineering Materials, 1(1), 20120005.
DOI 10.1520/ACEM20120005
Faubert, P., Barnabé, S., Bouchard, S., Côté, R., & Villeneuve, C. (2016). Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resources, Conservation and Recycling, 108, 107–133.
DOI 10.1016/j.resconrec.2016.01.007
Feng, S.-J., Chang, J.-Y., & Chen, H.-X. (2018). Seismic analysis of landfill considering the effect of GM-GCL interface within liner. Soil Dynamics and Earthquake Engineering, 107, 152–163.
DOI 10.1016/j.soildyn.2018.01.025
Galvão, T. C., Kaya, A.,Mahler, C., Ören A. H., & Yükselen, Y. (2008). Innovative Technology for Liners. Soil and Sediment Contamination, 17(4), 411-424
Garg, A., Reddy, N. G., Huang, H., Buragohain, P., & Kushvaha, V. (2020). Modelling contaminant transport in fly ash–bentonite composite landfill liner: Mechanism of different types of ions. Scientific Reports, 10(1), 11330.
DOI 10.1038/s41598-020-68198-6
Gaspar, F., Bakatovich, A., Davydenko, N., & Joshi, A. (2020). Building insulation materials based on agricultural wastes. Bio-Based Materials and Biotechnologies for Eco-Efficient Construction, 149–170.
DOI 10.1016/B978-0-12-819481-2.00008-8
Gheni, A. A., Alghazali, H. H., ElGawady, M. A., Myers, J. J., & Feys, D. (2019). Durability properties of cleaner cement mortar with by-products of tire recycling. Journal of Cleaner Production, 213, 1135–1146.
DOI 10.1016/j.jclepro.2018.12.260
Ghorpade, V. G. (2012). Effect of Wood Waste Ash on the Strength Characteristics of Concrete. Nature Environment and Pollution Technology, 11(1), 121-124
Golawska, A. (2024, February 29). Tire Waste Statistics You Need To Know. Contec. Retrieved April 1, 2024. https://contec.tech/tire-waste-statistics-need-to-know/#:~:text=Globally%2C%20an%20estimated%20one%20billion
Hughes, K. L., Christy, A. D., & Heimlich, J. E. (2005). Landfill Types and Liner Systems. Ohio State Fact Sheet, 1-4
Igbinomwanhia, D. I. (2012). Characterization of commercial solid waste in Benin metropolis, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 3(5), 834-838
Ikpe, A. E., Owunna, I. B., & Agho, N. (2019). Physiochemical analysis of municipal solid waste leachate from open dumpsites in Benin City metropolis. Journal of Applied Sciences and Environmental Management, 23(1), 165–171
Ikpe, A., Ndon, A.-I. E., & Etim, P. (2020). Assessment of the waste management system and its implication in Benin City metropolis, Nigeria. Journal of Applied Research on Industrial Engineering, 7(1).
DOI 10.22105/jarie.2020.215049.1121
International Institute of Tropical Agriculture (IITA). (2022). Cassava Peels for Animal Feed Production. Retrieved April 1, 2024
IPCC (2021). Intergovernmental Panel on Climate Change. Sixth Assessment Report (AR6) - Climate Change 2021: The Physical Science Basis
Ireaja, N. A., Okeke, O. C., & Opara, A. I. (2018). Sanitary Landfills: Geological and Environmental Factors that Influence Their Siting, Operation and Management. IIARD International Journal of Geography and Environmental Management, 4, 1-9
Jishnu, P. S., & Mohini, M. B. (2020). Study on Site Soil Treated with Bagasse Ash as a Liner Material. International Research Journal of Engineering and Technology, 7(2), 1345–1348
Kartika, S., Asiyanthi, L. A., Irwan, R. R., & Hidayat, A. (2022). Strength Behaviour of Sugarcane Bagasse Ash Treated Sewage Sludge-Soil Mixture. IOP Conference Series: Earth and Environmental Science, 1117(1), 012049.
DOI 10.1088/1755-1315/1117/1/012049
Kaushik, D., & Singh, S. K. (2021). Use of coir fiber and analysis of geotechnical properties of soil. Materials Today: Proceedings, 47, 4418–4422.
DOI 10.1016/j.matpr.2021.05.255
Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. In Openknowledge: Worldbank. Retrieved January 26, 2024, from https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a
Rowe, R. K., Reinert, J., Li, Y., & Awad, R. (2023). The need to consider the service life of all components of a modern MSW landfill liner system. Waste Management, 161, 43–51.
DOI 10.1016/j.wasman.2023.02.004
Kuokkanen, T., Nurmesniemi, H., Pöykiö, R., Kujala, K., Kaakinen, J., & Kuokkanen, M. (2008). Chemical and leaching properties of paper mill sludge. Chemical Speciation & Bioavailability, 20(2), 111–122.
DOI 10.3184/095422908X324480
Li, L., Lin, C., & Zhang, Z. (2017). Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Materials & Design, 114, 73–82.
DOI 10.1016/j.matdes.2016.10.046
Likon, M., Černec, F., Saarela, J., Zimmie, T. F., & Zule, J. (2009). Use of paper mill sludge for absorption of hydrophobic substances. 2nd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 526–533
Market Data Forecast. (2023). Rice Husk Ash Market Size (2023–2028). Retrieved April 1, 2024. https://www.marketdataforecast.com/market-reports/rice-husk-ash-market
Martínez-García, R., Jagadesh, P., Zaid, O., Șerbănoiu, A. A., Fraile-Fernández, F. J., De Prado-Gil, J., Qaidi, S. M. A., & Grădinaru, C. M. (2022). The Present State of the Use of Waste Wood Ash as an Eco-Efficient Construction Material: A Review. Materials, 15(15), 5349.
DOI 10.3390/ma15155349
Melchior, S., Volker Sokollek, Berger, K., Vielhaber, B., & Steinert, B. (2010). Results from 18 Years of In Situ Performance Testing of Landfill Cover Systems in Germany. Journal of Environmental Engineering, 136(8), 815–823.
DOI 10.1061/(asce)ee.1943-7870.0000200
Mishra, A. K., & Ravindra, V. (2015). On the Utilization of Fly Ash and Cement Mixtures as a Landfill Liner Material. International Journal of Geosynthetics and Ground Engineering, 1(2), 17.
DOI 10.1007/s40891-015-0019-1
Mollamahmutoğlu, M., & Yilmaz, Y. (2001). Potential use of fly ash and bentonite mixture as liner or cover at waste disposal areas. Environmental Geology, 40(11–12), 1316–1324.
DOI 10.1007/s002540100355
Narani, S. S., Abbaspour, M., Mir Mohammad Hosseini, S. M., Aflaki, E., & Moghadas Nejad, F. (2020). Sustainable reuse of Waste Tire Textile Fibers (WTTFs) as reinforcement materials for expansive soils: With a special focus on landfill liners/covers. Journal of Cleaner Production, 247, 119151.
DOI 10.1016/j.jclepro.2019.119151
Ochepo, J. (2020). Effect of Rice Husk Ash on the Hydraulic Conductivity and Unconfined Compressive Strength of Compacted Bentonite Enhanced Waste Foundry Sand. LAUTECH Journal of Civil and Environmental Studies, 5(1), 85–96.
DOI 10.36108/laujoces/0202/50(0190)
Ofuyatan, O. M., Adeniyi, A. G., Ijie, D., Ighalo, J. O., & Oluwafemi, J. (2020). Development of high-performance self compacting concrete using eggshell powder and blast furnace slag as partial cement replacement. Construction and Building Materials, 256, 119403.
DOI 10.1016/j.conbuildmat.2020.119403
Olaoye, R. A., Afolayan, O. D., Oladeji, V. O., & Sani, R. O. (2019). Influence of bentonite on clayey soil as a landfill baseliner materials. IOP Conference Series: Materials Science and Engineering, 640(1), 012107.
DOI 10.1088/1757- 899X/640/1/012107
Oluremi, J. R., Eberemu, A. O., Ijimdiya, S. T., & Osinubi, K. J. (2019). Lateritic Soil Treated with Waste Wood Ash As Liner in Landfill Construction. Environmental and Engineering Geoscience, 25(2), 127–139.
DOI 10.2113/eeg-2023
Onyelowe, K. C., Obianyo, I. I., Onwualu, A. P., Onyia, M. E., & Moses, C. (2021). Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction. Cleaner Materials, 1, 100007.
DOI 10.1016/j.clema.2021.100007
Onyelowe, K. C., Ebid, A. M., De Jesús Arrieta Baldovino, J., & Onyia, M. E. (2022). Hydraulic conductivity predictive model of RHA-ameliorated laterite for solving landfill liner leachate, soil and water contamination and carbon emission problems. International Journal of Low-Carbon Technologies, 17, 1134–1144.
DOI 10.1093/ijlct/ctac077
Oyebisi, S., Ede, A., Olutoge, F., & Omole, D. (2020). Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Construction and Building Materials, 256, 119390.
DOI 10.1016/j.conbuildmat.2020.119390
Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732–1739
Parameswari, K., Majid Salim Al Aamri, A., Gopalakrishnan, K., Arunachalam, S., Ali Said Al Alawi, A., & Sivasakthivel, T. (2021). Sustainable landfill design for effective municipal solid waste management for resource and energy recovery. Materials Today: Proceedings.
DOI 10.1016/j.matpr.2021.04.528
Patil, M. R., Quadri, S. S., & Lakshmikantha, H. (2009). Alternative Materials for Landfill Liners and Covers. IGC 2009, 301-304
Puspita, A. S., Budihardjo, M. A., & Samadikun, B. P. (2023). Evaluating coconut fiber and fly ash composites for use in landfill retention layers. Global NEST Journal, 25(4), 1-7
Rani, S. R., & Chandra, S. V. (2017). Suitability of Soft Clay as Clay Liner based on Clay-Leachate Interaction Studies. IOSR Journal of Mechanical and Civil Engineering, 14(3), 115–123.
DOI 10.9790/1684-140305115123
Reddy, P. S., Reddy, N. G., Serjun, V. Z., Mohanty, B., Das, S. K., Reddy, K. R., & Rao, B. H. (2020). Properties and Assessment of Applications of Red Mud (Bauxite Residue): Current Status and Research Needs. Waste and Biomass Valorization, 12(3), 1185–1217.
DOI 10.1007/s12649-020-01089-z
Reddy, N. G., Vidya, A., & Sri Mullapudi, R. (2022). Review of the Utilization of Plastic Wastes as a Resource Material in Civil Engineering Infrastructure Applications. Journal of Hazardous, Toxic, and Radioactive Waste, 26(4), 03122004.
DOI 10.1061/(ASCE)HZ.2153-5515.0000717
Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493.
DOI 10.1016/j.jhazmat.2007.09.077
Rihn, A. (2021, December 2). A brief history of garbage and the future of waste generation. In Roadrunner Recycling. Retrieved January 26, 2024, from https://www.roadrunnerwm.com/blog/history-of-garbage
Safari, E., Jalili Ghazizade, M., Abduli, M. A., & Gatmiri, B. (2014). Variation of crack intensity factor in three compacted clay liners exposed to annual cycle of atmospheric conditions with and without geotextile cover. Waste Management, 34(8), 1408–1415.
DOI 10.1016/j.wasman.2014.03.029
Sathiparan, N., Anburuvel, A., Selvam, V. V., & Vithurshan, P. A. (2023). Potential use of groundnut shell ash in sustainable stabilized earth blocks. Construction and Building Materials, 393, 132058.
DOI 10.1016/j.conbuildmat.2023.132058
Shahbandeh, M. (2024, February 6). Leading sugar cane producers worldwide in 2022, based on production volume (in million metric tons). Statista. Retrieved March 31, 2024. https://www.statista.com/statistics/267865/principal-sugar-cane-producers-worldwide/
Shu, S., Zhu, W., & Shi, J. (2019). A new simplified method to calculate breakthrough time of municipal solid waste landfill liners. Journal of Cleaner Production, 219, 649–654.
DOI 10.1016/j.jclepro.2019.02.050
Siddique, R. (2012). Utilization of wood ash in concrete manufacturing. Resources, Conservation and Recycling, 67, 27–33.
DOI 10.1016/j.resconrec.2012.07.004
Solomon, A., & Poulose, E. (2018). A Comprehensive Review on Landfill Liner. International Research Journal of Engineering and Technology, 5(11), 621-628
Tam, V. W. Y., Soomro, M., & Evangelista, A. C. J. (2018). A review of recycled aggregate in concrete applications (2000–2017). Construction and Building Materials, 172, 272–292.
DOI 10.1016/j.conbuildmat.2018.03.240
Tamunobereton-ari, I., Omubo-Pepple, V. B., & Briggs-Kamara, M. A. (2012). The Impact of Municipal Solid Waste Landfill on the Environment and Public Health in Port Harcourt and Its’ Environs, Rivers State, Nigeria. Trends in Advanced Science and Engineering, 3(1), 49-57
The Council for Scientific and Industrial Research (2000). Guidelines for Human Settlement Planning and Design. CSIR Building Construction Technology 2.
DOI 10.1108/eb045383
Thomas, B. S., & Gupta, R. C. (2016). Properties of high strength concrete containing scrap tire rubber. Journal of Cleaner Production, 113, 86–92.
DOI 10.1016/j.jclepro.2015.11.019
Thomas, S. A., & Thomas, S. (2019). Characteristic Study on Liner Properties Using Paper Mill Sludge and Sepiolite. Journal of Emerging Technologies and Innovative Research, 6(5), 391–395
Tiza, M. T., & Iorver, V. (2016). A review of literature on effect of agricultural solid waste on stabilization of expansive soil. International Journal for Innovative Research in Multidisciplinary Field, 2(7),121–132
Tripathi, N., Hills, C. D., Singh, R. S., & Atkinson, C. J. (2019). Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Npj Climate and Atmospheric Science, 2(35).
DOI 10.1038/s41612-019-0093-5
Ukwaba, S. I., Ikpe, A. E., & Orhorhoro, E. K. (2018). Adoption of a Landfill System in Nigeria and the Role of Municipal Solid Waste Segregation on its Performance. Nigerian Research Journal of Engineering and Environmental Sciences, 3(1), 280-286
United Nations. (2015). The 17 Sustainable Development Goals. United Nations. Retrieved April 1, 2024. https://sdgs.un.org/goals
Vathani, T., & Logeshwari, J. (2023). A novel approach to utilize recycled concrete aggregates as landfill liner. Waste Management Bulletin, 1(1), 39–48.
DOI 10.1016/j.wmb.2023.02.001
Vishnupriya, A., & Rajagopalan, V. (2022). Comparative Performance of Compacted Clay Liner (CCL) and Geosynthetic Clay Liner (GCL). Journal of Bioanalytical Methods and Techniques, 2(1), 103
Wagih, A. M., El-Karmoty, H. Z., Ebid, M., & Okba, S. H. (2013). Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC Journal, 9(3), 193–200.
DOI 10.1016/j.hbrcj.2013.08.007
Wikipedia Contributors. (2024, January 22). Landfill. In Wikipedia, The Free Encyclopedia. Retrieved January 26, 2024, from https://en.wikipedia.org/wiki/Landfill
Xu, R., Liu, Y., Li, X., Yao, G., Xu, Y., & She, K. (2023). Research on leakage environmental risk assessment and risk prevention and control measures in the long-term landfill process of ultra-alkaline fly ash. Waste Management, 172, 320–325.
DOI 10.1016/j.wasman.2023.10.022
Yadav, V. K., Amari, A., Gacem, A., Elboughdiri, N., Eltayeb, L. B., & Fulekar, M. H. (2023). Treatment of Fly-Ash-Contaminated Wastewater Loaded with Heavy Metals by Using Fly-Ash-Synthesized Iron Oxide Nanoparticles. Water, 15(5), 908.
DOI 10.3390/w15050908
Ian D. Williams, Toby J. Roberts, Lina Maria Zapata-Restrepo, Maria Neophytou, Angelos Ktoris, Androniki Maragkidou and Jukka-Pekka Jalkanen
Published 02 Sep 2024Lina Maria Zapata-Restrepo, Ian D. Williams, Malcolm Hudson, Georgia Freeman, Bronwyn Lee and Clement Prieul
Published 02 Sep 2024Sergio Malinconico, Federica Paglietti, Sergio Bellagamba, Silvia Serranti, Giuseppe Bonifazi, Davide Gattabria, Ivano Lonigro and Riccardo Gasbarrone
Published 02 Sep 2024Title | Support | Price |
---|