an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU

SUPPLY AND SUBSTITUTION OPTIONS FOR SELECTED CRITICAL RAW MATERIALS: COBALT, NIOBIUM, TUNGSTEN, YTTRIUM AND RARE EARTHS ELEMENTS

  • Andreas Bartl - ienna University of Technology, Institute of Chemical, Environmental & Bioscience Engineering, Austria
  • Alan H. Tkaczyk - University of Tartu, Institute of Physics, Estonia
  • Alessia Amato - Polytechnic University of Marche, Department of Life and Environmental Sciences-DiSVA, Italy
  • Francesca Beolchini - Polytechnic University of Marche, Department of Life and Environmental Sciences-DiSVA, Italy
  • Vjaceslavs Lapkovskis - Riga Technical University, Latvia
  • Martina Petranikova - Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Sweden

DOI 10.31025/2611-4135/2018.13697

Released under CC BY-NC-ND

Copyright: © 2018 CISA Publisher

Editorial History

  • Received: 25 Jan 2018
  • Revised: 11 Jul 2018
  • Accepted: 22 Aug 2018
  • Available online: 10 Sep 2018

Abstract

European industry is dependent on the import of raw materials. The European Commission has recognized that some raw materials are crucial for the function of the European economy and show a high risk of supply shortage. This communication addresses supply and substitution options for selected critical raw materials: cobalt, niobium, tungsten, yttrium, and the rare earth elements. For each element, the most relevant data concerning mining, abundance, recycling rates and possible substitutes are summarized and discussed.​

Keywords


References

Bauccio M. (1993). ASM Metals Reference Book 3rd Revised edition, pp 120-122.

BGS (2011). Tungsten Minerals Profile, British Geological Survey, available at: http://www.bgs.ac.uk/downloads/start.cfm?id=1981 (accessed 28 June 2017).

Birat J.-P, Sibley S.F. (2011). Appendix C. Review of Ferrous Metal Recycling Statistics, in: Recycling Rates of Metals – A Status Report, A Report of the Working Group on the Global Metal Flows to the International Resource Panel. Graedel T.E., Allwood J., Birat J.-P., Reck B.K., Sibley S.F., Sonnemann G., Buchert M., Hagelüken C.

CDI (2006). Cobalt facts - Properties, Cobalt Development Institute. available at: http://www.thecdi.com/cdi/images/documents/facts/COBALT_FACTS-Properties_and_Main_Uses.pdf (accessed 28 June 2017).

Chen L., Tang X, Zhang Y., Li L., Zeng Z., Zhang Y. (2011), Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy 108, 80–86.

Cheang, C.Y., Mohamed, N., (2016). Removal of cobalt from ammonium chloride solutions using a batch cell through an electrogenerative process. Sep. Purif. Technol. 162, 154–161.
DOI 10.1016/j.seppur.2016.02.023

Christian J., Singh Gaur R.P., Wolfe T., Trasorras J. R. L. (2011). Tungsten Chemicals and their Applications, International Tungsten Industry Association, available at: http://www.itia.info/assets/files/newsletters/Newsletter_2011_06.pdf (accessed 27 June 2017).

Connelly N.G., Damhus T., Hartshorn R.M., Hutton A.T. (2005). Nomenclature of Inorganic Chemistry, International Union of Pure and Applied Chemistry.

Cordier D.J. (2012). Yttrium, Mineral Commodity Summaries 2016, .S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/mcs/2012/mcs2012.pdf (accessed 28 June 2017).

EC (2014a). European Commission, Report on Critical Raw Materials For The EU, Report of the Ad hoc Working Group on defining critical raw materials, May 2014, available at: http://ec.europa.eu/DocsRoom/documents/10010/attachments/1/translations/en/renditions/pdf (accessed 17 June 2017).

EC (2014b). European Commission, Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions, On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative, May 2014, available at: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0297&from=EN (accessed 3 July 2017).

EC (2016). Material Information System (MIS) - Cobalt, European Commission, Material Information System (MIS), available at: https://setis.ec.europa.eu/mis/material/cobalt (accessed 22 June 2017).

EC (2017) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU COM(2017) 490 final (https://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF) (Accessed: 2 July 2018).

DIN (2014). Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle. DIN EN 10088-1:2014-12, German Institute for Standardisation

Donaldson, J. D., Beyersmann, D. (2005). Cobalt and Cobalt Compounds. Ullmann’s Encyclopedia of Industrial Chemistry.

Gambogi J. (2016). Yttrium, Mineral Commodity Summaries 2016, .S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/mcs/2016/mcs2016.pdf (accessed 28 June 2017).

Gambogi J. (2017). Rare Earth, U.S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/mcs-2017-raree.pdf (accessed 28 June 2017).

Hatchett C. (1802). An Analysis of a Mineral Substance from North America, Containing a Metal Hitherto Unknown. Philosophical Transactions of the Royal Society of London. vol. 92, 49-66.

Innocenzi V.,De Michelis I., Kopacek B., Vegliò F. (2014), Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes, Waste Manage. 34(7), 1237-1250.

ITIA (2011a). History of Tungsten, International Tungsten Industry Association, available at: http://www.itia.info/history.html (accessed 27 June 2017).

Jian G., Guo J., Wang X., Sun C., Zhou Z., Yu L., Kong F., Qiu J. (2012) Study on separation of cobalt and lithium salts from waste mobile-phone batteries, Proc. Environ. Sci. 16, 495–499.

Jowitt S.M., Werner T.T., Weng Z, Mudd G.M. (2018), Recycling of the rare earth elements, Current Opinion in Green and Sustainable Chemistry 13, 1-7.

Long K.R., Gosen B.S.V., Foley, N.K. Cordier D. (2010). The Principal Rare Earth Elements Deposits of the United States. In: U.S.G. Survey (Ed.).

Minerals UK (2009). Cobalt Minerals Profile, British Geological Survey, available at: https://www.bgs.ac.uk/downloads/start.cfm?id=1400 (accessed 21 June 2017).

Nayak P.K., Yang L., Brehm W., Adelhelm P. (2017). From Lithium‐Ion to Sodium‐Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie 57(1), 102-120.

Pagnanelli F., Moscardini E., Altimari P., Abo Atia T., Toro L. (2016), Cobalt products from real waste fractions of end of life lithium ion batteries, Waste Manage. 51, 214–21.

Papp J.F. (2017). NIOBIUM (COLUMBIUM), U.S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/commodity/niobium/mcs-2017-niobi.pdf (accessed 25 April 2017)

Schubert W.D., Lassner E., Danninger H. (2008). Tungsten in Steel, International Tungsten Industry Association Newsletter, 2-11.

Shedd, K.B. (2004). Cobalt Recycling in the United States in 1998, U.S. GEOLOGICAL SURVEY CIRCULAR 1196–M, M1-M16.

Shedd K.B. (2011). Tungsten recycling in the United States in 2000, chap. R of Sibley, S.F., Flow studies for recycling metal commodities in the United States: U.S. Geological Survey Circular 1196–R, p. R1–R19, available at https://pubs.usgs.gov/circ/circ1196-R. (accessed 27 June 2017).

Shedd, K.B. (2017a). Cobalt, U.S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/commodity/cobalt/mcs-2017-cobal.pdf (accessed 21 June 2017)

Shedd, K.B. (2017b). Tungsten, U.S. Geological Survey, U.S. Department of the Interior, available at: https://minerals.usgs.gov/minerals/pubs/commodity/tungsten/mcs-2017-tungs.pdf (accessed 27 June 2017)

Schulz, K., Papp, J., Niobium and Tantalum—Indispensable Twins, U.S. Geological Survey Fact Sheet 2014-3054, June 2014, available at: https://pubs.usgs.gov/fs/2014/3054/pdf/fs2014-3054.pdf (accessed 17 June 2017).

Shishkin A., Mironov V.,Goljandin D., Lapkovsky V. (2010), Mechanical disintegration of Al-W-B waste material, in Proceedings of the World Powder Metallurgy Congress and Exhibition, World PM 2010, vol. 3.

Somerley (2011). Market report on tungsten, fluorspar, bismuth and copper, Somerley Limited.

Testa F., Coetsier C., Carretier E., Ennahali M., Laborie B., Moulin P. (2014). Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer: Effect of chemical adjustments and comparison between static and dynamic experiments, Microelectron. Eng. 113, 114–122.

TIC (2016). T.I.C. Statistics Overview. Tantalum-Niobium International Study Center, Bulletin No 164, 20.

Tunsu C., Petranikova M., Gergorić M., Ekberg C., Retegan T. (2015). Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations, Hydrometallurgy 156, 239-258.

UNEP (2011). Recycling Rates of Metals – A Status Report, A Report of the Working Group on the Global Metal Flows to the Interna-tional Resource Panel. Graedel T.E., Allwood J., Birat J.-P., Reck B.K., Sibley S.F., Sonnemann G., Buchert M., Hagelüken C.

Zeiler B., Schubert W.D., Bartl A. (2018) Recycling of Tungsten - Current share, economic limitations and future potential, ITIA Tungsten Newsletter, May 2018, 1-18.


feb
23
sep
30