Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
DWD Climate Data Center. (n.d.). Hourly station observations of air temperature at 2 m above ground in °C for Germany, version v19.3. Retrieved 10 10, 2019, from https://cdc.dwd.de/portal/
COMSOL Multiphysics® v. 5.3. (2019). Stockholm, Sweden: COMSOL AB. www.comsol.com
Das, K., & Keener, H. M. (1997, March 01). Moisture effect on compaction and permeability in composts. Journal of environmental engineering(3), pp. 275-281.
DOI 10.1061/(ASCE)0733-9372(1997)123:3(275)
Deipser, A. (2014). Prozesssimulation biologischer Abbauprozesse im Bereich der Abfallwirtschaft. Technische Universität Hamburg. Hamburg: Gesellschaft zur Förderung und Entwicklung der Umwelttechnologien an der Technischen Universität Hamburg-Harburg e.V. (GFEU).
DOI 10.15480/882.1181
European Environment Agency. (2017). Energy and mitigating climate change. Retrieved April 1, 2019, from https://www.eea.europa.eu/signals/signals-2017/infographics/energy-and-mitigating-climate-change/image/image_view_fullscreen
Finger, S. M., Hatch, R. T., & Regan, T. M. (1976). Aerobic microbial growth in semisolid matrices: heat and mass transfer limitation. Biotechnology and Bioengineering, 18(9), 1193-1218.
DOI 10.1002/bit.260180904
Hamelers, H. V. (2001). A mathematical model for composting kinetics. Wageningen University. Wageningen, Netherlands: Wageningen University. https://edepot.wur.nl/193815
Haug, R. T. (1993). The Practical Handbook of Compost Engineering. Boca Raton, Florida: CRC Press.
DOI 10.1201/9780203736234
Jaschke, N., & Schmidt-Baum, T. (2021). Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors. Ecological Chemistry and Engineering, 28(2), 201-217.
DOI 10.2478/eces-2021-0015
Liang, Y., Leonard, J. J., Feddes, J. J., & McGill, W. B. (2004). A simulation model of ammonia volatilization in composting. Transactions of the ASAE(5), p. 1667
Luangwilai, T., & Sidhu, H. (2010). Determining critical conditions for two dimensional compost piles with air flow via numerical simulations. ANZIAM Journal, 52, 463-481.
DOI 10.21914/anziamj.v52i0.3753
Luangwilai, T., S. Sidhu, H., & Nelson, M. I. (2012). Understanding the role of moisture in the self-heating process of compost piles. Chemeca 2012: Quality of life through chemical engineering: 23-26 September 2012. Wellington, New Zealand. Retrieved from https://ro.uow.edu.au/eispapers/196/
Luangwilai, T., Sidhu, H. S., & Nelson, M. I. (2018). One-dimensional spatial model for self-heating in compost piles: Investigating effects of moisture and air flow. Food and Bioproducts Processing, 108, 18-26.
DOI 10.1016/j.fbp.2017.12.001
Luangwilai, T., Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2010). Modelling air flow and ambient temperature effects on the biological self‐heating of compost piles. Asia‐Pacific Journal of Chemical Engineering, 5(4), 609-618.
DOI 10.1002/apj.438
Luangwilai, T., Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2010). Modelling air flow and ambient temperature effects on the biological self‐heating of compost piles. Asia‐Pacific Journal of Chemical Engineering, 5(4), 609-618.
DOI 10.1002/apj.438
Lukyanova, A. (2012). Spatial Modeling of the Composting Process. Edmonton, Alberta: University of Alberta.
DOI 10.7939/R3DN4065R
Malesani, R., Pivato, A., Bocchi, S., Lavagnolo, M. C., Muraro, S., & Schievano, A. (2021, May 1). Compost Heat Recovery Systems: An alternative to produce renewable heat and promoting ecosystem services. (Elsevier, Ed.) Environmental Challenges(4), p. 100131.
DOI 10.1016/j.envc.2021.100131
Mason, I. G. (2006). Mathematical modelling of the composting process: a review. Waste Management, 26(1), 3-21.
DOI 10.1016/j.wasman.2005.01.021
Mason, I. G. (2007). A Study of Power, Kinetics, and Modelling in the Composting Proces. Christchurch, New Zealand: University of Canterbury.
DOI 10.26021/2348
Mudhoo, A., & Mohee, R. (2008). Modeling Heat Loss during Self-Heating Composting Based on Combined Fluid Film Theory and Boundary Layer Concepts. Journal of Environmental informatics, 11(2)
Müller, N. (2017). Untersuchungen zum Betreibsverhalten von Biomeilern. Dresden: Technische Universität Dresden. http://d-nb.info/1227312180
Mwape, M. C., Muchilwa, I. E., Siagi, Z. O., & Yamba, F. D. (2020). Design and Performance Evaluation of a Hydronic Type Compost Heat Exchanger. Cogent Engineering, 7(1), 1846253.
DOI 10.1080/23311916.2020.1846253
Nwanze, K., & Clark, O. (2019). Optimizing Heat Extraction from Compost. Compost Science and Utilization, 27(4), 217-226.
Rongfei, Z., Huiqing, G., & Wei, G. (2017). Comprehensive review of models and methods used for heat recovery from composting process. International Journal of Agricultural and Biological Engineering, 10(4), 1-12.
DOI 10.25165/j.ijabe.20171004.2292
Schmidt-Baum, T., Jaschke, N., Stinner, W., Schmidt, D., Windisch, F., Renner, D., & Pohl, R. (2020). IBÖM03: Entwicklung eines Mehrkammerbiomeilers zur effizienten Wärme und Komposterzeugung. Leipzig: DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH.
DOI 10.2314/KXP:176596945X
Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2006). A simple spatial model for self-heating compost piles. ANZIAM Journal, 48, 135-150.
DOI 10.21914/anziamj.v48i0.86
Sidhu, H., Nelson, M. I., Luangwilai, T., & Chen, X. D. (2007). Mathematical modelling of the self-heating process in compost piles. Chemical Product and Process Modeling, 2(2), 8.
DOI 10.2202/1934-2659.1070
Thermal protection and energy economy in buildings - Part 6: Calculation of annual heat and energy use. (2003-01). German Institute for Standardisation.
DOI 10.31030/9258155
Vidriales-Escobar, G., Rentería-Tamayo, R., Alatriste-Mondragón, F., & González-Ortega, O. (2017). Mathematical modeling of a composting process in a small-scale tubular bioreactor. Chemical Engineering Research and Design, I(20), 360-371.
DOI 10.1016/j.cherd.2017.02.006
Wikipedia. (2019, 01 18). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Density_of_air
Wikipedia. (2019, 01 18). Retrieved from https://en.wikipedia.org/wiki/Atmospheric_pressure
Yu, S. (2007). Heat and mass transfer in passively aerated compost. PhD thesis, University of Alberta, Alberta.
DOI 10.7939/r3-xd82-bk03
Zambra, C. E., Moraga, N. O., & Escudey, M. (2011). Heat and mass transfer in unsaturated porous media: Moisture effects in compost piles self-heating. International Journal of Heat and Mass Transfer, 54(13-14), 2801-2810.
DOI 10.1016/j.ijheatmasstransfer.2011.01.031
Zambra, C. E., Moraga, N. O., Rosales, C., & Lictevout, E. (2012). Unsteady 3D heat and mass transfer diffusion coupled with turbulent forced convection for compost piles with chemical and biological reactions. International Journal of Heat and Mass Transfer, 55(23-24), 6695-6704.
DOI 10.1016/j.ijheatmasstransfer.2012.06.078
Zampieri, P. (2017). Modelling of a technology for heat recovery from the composting process. Milan: Politecnico di Milano. Retrieved from https://www.politesi.polimi.it/handle/10589/141241
Patricia Battais, Francis Bonthoux, Sullivan Lechêne, Jennifer Klingler, Jérôme Grosjean, Nathalie Monta and Juliette Kunz-Iffli
Published 14 Sep 2022Kiranmani Janga, Begum Sameena and Gangagni Rao Anupoju
Published 14 Sep 2022Hadi Bello, Jamiu Olamilekan Ajao and Nusirat Aderinsola Sadiku
Published 14 Sep 2022Title | Support | Price |
---|