Released under CC BY-NC-ND
Copyright: © 2022 CISA Publisher
DWD Climate Data Center. (n.d.). Hourly station observations of air temperature at 2 m above ground in °C for Germany, version v19.3. Retrieved 10 10, 2019, from https://cdc.dwd.de/portal/
COMSOL Multiphysics® v. 5.3. (2019). Stockholm, Sweden: COMSOL AB. www.comsol.com
Das, K., & Keener, H. M. (1997, March 01). Moisture effect on compaction and permeability in composts. Journal of environmental engineering(3), pp. 275-281.
DOI 10.1061/(ASCE)0733-9372(1997)123:3(275)
Deipser, A. (2014). Prozesssimulation biologischer Abbauprozesse im Bereich der Abfallwirtschaft. Technische Universität Hamburg. Hamburg: Gesellschaft zur Förderung und Entwicklung der Umwelttechnologien an der Technischen Universität Hamburg-Harburg e.V. (GFEU).
DOI 10.15480/882.1181
European Environment Agency. (2017). Energy and mitigating climate change. Retrieved April 1, 2019, from https://www.eea.europa.eu/signals/signals-2017/infographics/energy-and-mitigating-climate-change/image/image_view_fullscreen
Finger, S. M., Hatch, R. T., & Regan, T. M. (1976). Aerobic microbial growth in semisolid matrices: heat and mass transfer limitation. Biotechnology and Bioengineering, 18(9), 1193-1218.
DOI 10.1002/bit.260180904
Hamelers, H. V. (2001). A mathematical model for composting kinetics. Wageningen University. Wageningen, Netherlands: Wageningen University. https://edepot.wur.nl/193815
Haug, R. T. (1993). The Practical Handbook of Compost Engineering. Boca Raton, Florida: CRC Press.
DOI 10.1201/9780203736234
Jaschke, N., & Schmidt-Baum, T. (2021). Heat Recovery of Compost Reactors: Field Study of Operational Behaviour, Heating Power and Influence Factors. Ecological Chemistry and Engineering, 28(2), 201-217.
DOI 10.2478/eces-2021-0015
Liang, Y., Leonard, J. J., Feddes, J. J., & McGill, W. B. (2004). A simulation model of ammonia volatilization in composting. Transactions of the ASAE(5), p. 1667
Luangwilai, T., & Sidhu, H. (2010). Determining critical conditions for two dimensional compost piles with air flow via numerical simulations. ANZIAM Journal, 52, 463-481.
DOI 10.21914/anziamj.v52i0.3753
Luangwilai, T., S. Sidhu, H., & Nelson, M. I. (2012). Understanding the role of moisture in the self-heating process of compost piles. Chemeca 2012: Quality of life through chemical engineering: 23-26 September 2012. Wellington, New Zealand. Retrieved from https://ro.uow.edu.au/eispapers/196/
Luangwilai, T., Sidhu, H. S., & Nelson, M. I. (2018). One-dimensional spatial model for self-heating in compost piles: Investigating effects of moisture and air flow. Food and Bioproducts Processing, 108, 18-26.
DOI 10.1016/j.fbp.2017.12.001
Luangwilai, T., Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2010). Modelling air flow and ambient temperature effects on the biological self‐heating of compost piles. Asia‐Pacific Journal of Chemical Engineering, 5(4), 609-618.
DOI 10.1002/apj.438
Luangwilai, T., Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2010). Modelling air flow and ambient temperature effects on the biological self‐heating of compost piles. Asia‐Pacific Journal of Chemical Engineering, 5(4), 609-618.
DOI 10.1002/apj.438
Lukyanova, A. (2012). Spatial Modeling of the Composting Process. Edmonton, Alberta: University of Alberta.
DOI 10.7939/R3DN4065R
Malesani, R., Pivato, A., Bocchi, S., Lavagnolo, M. C., Muraro, S., & Schievano, A. (2021, May 1). Compost Heat Recovery Systems: An alternative to produce renewable heat and promoting ecosystem services. (Elsevier, Ed.) Environmental Challenges(4), p. 100131.
DOI 10.1016/j.envc.2021.100131
Mason, I. G. (2006). Mathematical modelling of the composting process: a review. Waste Management, 26(1), 3-21.
DOI 10.1016/j.wasman.2005.01.021
Mason, I. G. (2007). A Study of Power, Kinetics, and Modelling in the Composting Proces. Christchurch, New Zealand: University of Canterbury.
DOI 10.26021/2348
Mudhoo, A., & Mohee, R. (2008). Modeling Heat Loss during Self-Heating Composting Based on Combined Fluid Film Theory and Boundary Layer Concepts. Journal of Environmental informatics, 11(2)
Müller, N. (2017). Untersuchungen zum Betreibsverhalten von Biomeilern. Dresden: Technische Universität Dresden. http://d-nb.info/1227312180
Mwape, M. C., Muchilwa, I. E., Siagi, Z. O., & Yamba, F. D. (2020). Design and Performance Evaluation of a Hydronic Type Compost Heat Exchanger. Cogent Engineering, 7(1), 1846253.
DOI 10.1080/23311916.2020.1846253
Nwanze, K., & Clark, O. (2019). Optimizing Heat Extraction from Compost. Compost Science and Utilization, 27(4), 217-226.
Rongfei, Z., Huiqing, G., & Wei, G. (2017). Comprehensive review of models and methods used for heat recovery from composting process. International Journal of Agricultural and Biological Engineering, 10(4), 1-12.
DOI 10.25165/j.ijabe.20171004.2292
Schmidt-Baum, T., Jaschke, N., Stinner, W., Schmidt, D., Windisch, F., Renner, D., & Pohl, R. (2020). IBÖM03: Entwicklung eines Mehrkammerbiomeilers zur effizienten Wärme und Komposterzeugung. Leipzig: DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH.
DOI 10.2314/KXP:176596945X
Sidhu, H. S., Nelson, M. I., & Chen, X. D. (2006). A simple spatial model for self-heating compost piles. ANZIAM Journal, 48, 135-150.
DOI 10.21914/anziamj.v48i0.86
Sidhu, H., Nelson, M. I., Luangwilai, T., & Chen, X. D. (2007). Mathematical modelling of the self-heating process in compost piles. Chemical Product and Process Modeling, 2(2), 8.
DOI 10.2202/1934-2659.1070
Thermal protection and energy economy in buildings - Part 6: Calculation of annual heat and energy use. (2003-01). German Institute for Standardisation.
DOI 10.31030/9258155
Vidriales-Escobar, G., Rentería-Tamayo, R., Alatriste-Mondragón, F., & González-Ortega, O. (2017). Mathematical modeling of a composting process in a small-scale tubular bioreactor. Chemical Engineering Research and Design, I(20), 360-371.
DOI 10.1016/j.cherd.2017.02.006
Wikipedia. (2019, 01 18). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Density_of_air
Wikipedia. (2019, 01 18). Retrieved from https://en.wikipedia.org/wiki/Atmospheric_pressure
Yu, S. (2007). Heat and mass transfer in passively aerated compost. PhD thesis, University of Alberta, Alberta.
DOI 10.7939/r3-xd82-bk03
Zambra, C. E., Moraga, N. O., & Escudey, M. (2011). Heat and mass transfer in unsaturated porous media: Moisture effects in compost piles self-heating. International Journal of Heat and Mass Transfer, 54(13-14), 2801-2810.
DOI 10.1016/j.ijheatmasstransfer.2011.01.031
Zambra, C. E., Moraga, N. O., Rosales, C., & Lictevout, E. (2012). Unsteady 3D heat and mass transfer diffusion coupled with turbulent forced convection for compost piles with chemical and biological reactions. International Journal of Heat and Mass Transfer, 55(23-24), 6695-6704.
DOI 10.1016/j.ijheatmasstransfer.2012.06.078
Zampieri, P. (2017). Modelling of a technology for heat recovery from the composting process. Milan: Politecnico di Milano. Retrieved from https://www.politesi.polimi.it/handle/10589/141241
Kateřina Chamrádová, Jitka Pavlíková, Panagiotis Basinas, Martina Vráblová, Kateřina Smutná, Barbora Tenklová, Jiří Rusín, Daniel Vrábl and Ivan Koutník
Published 14 Sep 2022Patricia Battais, Francis Bonthoux, Sullivan Lechêne, Jennifer Klingler, Jérôme Grosjean, Nathalie Monta and Juliette Kunz-Iffli
Published 14 Sep 2022Kiranmani Janga, Begum Sameena and Gangagni Rao Anupoju
Published 14 Sep 2022Title | Support | Price |
---|