Released under CC BY-NC-ND
Copyright: © 2020 CISA Publisher
Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology, 34(20), 4259–4265
Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst, 133(1), 25–46.
DOI 10.1039/B711896A
Blengini, G. A., Blagoeva, D., Dewulf, J., Torres de Matos, C., Nita, V., Vidal-Legaz, B., Latunussa, C., Kayam, Y., Talens Peiró, L., Baranzelli, C. E. L., Manfredi, S., Mancini, L., Nuss, P., Marmier, A., Alves-Dias, P., Pavel, C., Tzimas, E., Mathieux, F., Pennington, D., & Ciupagea, C. (2017). Assessment of the Methodology for Establishing the EU List of Critical Raw Materials
Du, J., Han, W., & Peng, Y. (2010). Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process. Journal of Cleaner Production, 18(2), 112–119.
DOI 10.1016/j.jclepro.2009.08.013
European Commission. (2011). Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions: Tackling the challenges in commodity markets and on raw materials. (COM (2011) 25 final)
European Commission. (2014). Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions: On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative (COM (2014) 297 final)
European Commission. (2017a). Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions on the 2017 list of Critical Raw Materials for the EU (COM (2017) 40 final)
European Commission. (2017b). Methodology for establishing the EU list of Critical Raw Materials: Guidelines
European Commission. (2017c). Study on the review of the list of Critical Raw Materials. Criticality Assessments
Ferro, P., & Bonollo, F. (2019). Materials selection in a critical raw materials perspective. Materials & Design, 177, 107848.
DOI 10.1016/j.matdes.2019.107848
García-Rubio, A., Rodríguez-Maroto, J. M., Gómez-Lahoz, C., García-Herruzo, F., & Vereda-Alonso, C. (2011). Electrokinetic remediation: The use of mercury speciation for feasibility studies applied to a contaminated soil from Almadén. Electrochimica Acta, 56(25), 9303–9310
Jalali, M., & Khanlari, Z. V. (2008). Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma, 143(1), 26–40
Khadhar, S., Sdiri, A., Chekirben, A., Azouzi, R., & Charef, A. (2020). Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils. Environmental Pollution, 263, 114543.
DOI 10.1016/j.envpol.2020.114543
Qureshi, A. A., Kazi, T. G., Baig, J. A., Arain, M. B., & Afridi, H. I. (2020). Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass. Chemosphere, 255, 126960.
DOI 10.1016/j.chemosphere.2020.126960
Rauret, G., Lopez-Sanchez, J.-F., Sahuquillo, A., Barahona, E., Lachica, M., Ure, A. M., Davidson, C. M., Gomez, A., Luck, D., Bacon, J., Yli-Halla, M., Muntau, H., & Quevauviller, Ph. (2000). Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. Journal of Environmental Monitoring, 2(3), 228–233
Reddy, K. R., Xu, C. Y., & Chinthamreddy, S. (2001). Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis. Journal of Hazardous Materials, 84(2), 279–296.
DOI 10.1016/S0304-3894(01)00237-0
Shehu, A., Lazo, P., & Pjeshkazini, L. (2009). Evaluation of metal species in sediment, using the BCR sequential and single extraction. Journal of Environmental Protection and Ecology, 10(2), 386–393
Subirés-Muñoz, J. D., García-Rubio, A., Vereda-Alonso, C., Gómez-Lahoz, C., Rodríguez-Maroto, J. M., García-Herruzo, F., & Paz-García, J. M. (2011). Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 79(2), 151–156
Sulkowski, M., & Hirner, A. V. (2006). Element fractionation by sequential extraction in a soil with high carbonate content. Applied Geochemistry, 21(1), 16–28.
DOI 10.1016/j.apgeochem.2005.09.016
Sutherland, R. A. (2010). BCR®-701: A review of 10-years of sequential extraction analyses. Analytica Chimica Acta, 680(1–2), 10–20.
DOI 10.1016/j.aca.2010.09.016
Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851
Villen-Guzman, M., Garcia-Rubio, A., Paz-Garcia, J. M., Vereda-Alonso, C., Gomez-Lahoz, C., & Rodriguez-Maroto, J. M. (2018). Aging effects on the mobility of Pb in soil: Influence on the energy requirements in electroremediation. Chemosphere, 213, 351–357.
DOI 10.1016/j.chemosphere.2018.09.039
Villen-Guzman, M., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Amaya-Santos, G., Gomez-Lahoz, C., & Vereda-Alonso, C. (2015). Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochimica Acta, 181, 139–145.
DOI 10.1016/j.electacta.2015.02.067
Villen-Guzman, M., Paz-Garcia, J. M., Rodriguez-Maroto, J. M., Gomez-Lahoz, C., & Garcia-Herruzo, F. (2014). Acid Enhanced Electrokinetic Remediation of a Contaminated Soil using Constant Current Density: Strong vs. Weak Acid. Separation Science and Technology, 49(10), 1461–1468.
DOI 10.1080/01496395.2014.898306
Yuan, C., & Weng, C.-H. (2006). Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge. Chemosphere, 65(1), 88–96.
DOI 10.1016/j.chemosphere.2006.02.050
Pedro Melo Rodrigues and Joaquim Esteves da Silva
Published 28 Dec 2020Marc A. Rosen
Published 28 Dec 2020Andrea Zatti
Published 28 Dec 2020Title | Support | Price |
---|