Released under CC BY-NC-ND
Copyright: © 2021 CISA Publisher
Amigo, J.M., Cruz, J., Bautista, M., Maspoch, S., Coello, J., Blanco, M., 2008. Study of pharmaceutical samples by NIR chemical-image and multivariate analysis. TrAC-Trends in Analytical Chemistry, 27, 696–713.
DOI 10.1016/j.trac.2008.05.010
Amigo, J.M., 2010. Practical issues of hyperspectral imaging analysis of solid dosage forms. Analytical and Bioanalytical Chemistry, 398, 93–109.
DOI 10.1007/s00216-010-3828-z
Alsewailem, F., D, Alrefaie, J.K., 2018. Effect of CONTAMINANT and processing regime on the mechanical properties and moldability of postconsumer polyethylene terephthalate bottles. Waste Manage., 81, 88-93.
DOI 10.1016/j.wasman.2018.09.052
Balage, J.M.; Amigo, J.M.; Antonelo, D.S.; Mazon, M.R.; Silva, S.d.L., 2018. Shear force analysis by core location in Longissimus steaks from Nellore cattle using hyperspectral images—A feasibility study. Meat Sci., 143, 30–38
Ballabio, D. and Consonni, V., 2013. Classification tools in chemistry. Part 1: Linear models. PLS-DA, Analytical Methods, 5, 3790-3798
Ballabio, D. and Todeschini, R., 2009. Multivariate classification for qualitative analysis, New York In D.-W. Sun (Ed.). Infrared spectroscopy for quality analysis and control, 83–104
Barker, M., Rayens, W., 2003. Partial least squares for discrimination. Journal of Chemometrics, 17 (3), 166–173.
DOI 10.1002/cem.785
Bonifazi, G., Capobianco, G., Serranti, S., 2018a. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 115-122.
DOI 10.1016/j.saa.2018.03.006
Bonifazi, G., Palmieri, R., & Serranti, S., 2018b. Evaluation of attached mortar on recycled concrete aggregates by hyperspectral imaging. Construction and Building Materials, 169, 835-842
Bonifazi, G., Capobianco, G., & Serranti, S., 2018c. Asbestos containing materials detection and classification by the use of hyperspectral imaging. Journal of hazardous materials, 344, 981-993
Bonifazi, G., Capobianco, G., & Serranti, S., 2019. Hyperspectral imaging and hierarchical PLS-DA applied to asbestos recognition in construction and demolition waste. Applied Sciences, 9(21), 4587
Bonifazi, G., Fiore, L., Hennebert, P., & Serranti, S., 2020. An efficient strategy based on hyperspectral imaging for brominated plastic waste sorting in a circular economy perspective. Advances in Polymer Processing, 14-27
Bonifazi, G., Fiore, L., Gasbarrone, R., Hennebert, P., & Serranti, S., 2021a. Detection of brominated plastics from E-waste by short-wave infrared spectroscopy. Recycling, 6 (3), 54
Bonifazi, G., Capobianco, G., Gasbarrone, R., & Serranti, S., 2021b. Contaminant detection in pistachio nuts by different classification methods applied to short-wave infrared hyperspectral images. Food Control, 108202
Bro, R., Smilde, A.K., 2014
Principal component analysis. Analytical Methods, 6, 2812.
DOI 10.1039/c3ay41907j
Calvini, R., Ulrici, A., & Amigo, J. M., 2016. Sparse-Based Modelling of Hyperspectral Data, in Data Handling in Science and Technology, 30, 613-634
Chong, I., and Jun, C., 2005. Performance of some variable selection methods when multicollinearity is present, Chemo. Intell. Lab. Sys. 78, 103-112
Cucuzza, P., Serranti, S., Bonifazi, G., & Capobianco, G., 2021. Effective Recycling Solutions for the Production of High-Quality PET Flakes Based on Hyperspectral Imaging and Variable Selection. Journal of Imaging, 7(9), 181
Currà, A.; Gasbarrone, R.; Cardillo, A.; Trompetto, C.; Fattapposta, F.; Pierelli, F.; Missori, P.; Bonifazi, G.; Serranti, S., 2019. Near-infrared spectroscopy as a tool for in vivo analysis of human muscles. Sci. Rep., 9, 8623
Eriksen, M.K., Damgaard, A., Boldrin, A., Astrup, T., F., 2018. Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste. Journal of Industrial Ecology, 23 (1), 156-168.
DOI 10.1111/jiec.12822
Faraca, G., Astrup, T., 2019. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Management, 95, 388-398.
DOI 10.1016/j.wasman.2019.06.038
Gowen, A.A., O'Donnell, C.P., Cullen, P.J., Downey, G., Frias J.M., 2007. Hyperspectral imaging – an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol., 18, 590-598. 10.1016/j.tifs.2007.06.001
Geladi, P., Grahn, H. and Burger, J., 2007. Multivariate images, hyperspectral imaging: background and equipment, in: (Grahn, H. and Geladi, P. Eds.) Techniques and Applications of Hyperspectral Image Analysis, John Wiley & Sons, West Sussex, England, 1-15
Küppers, B., Chen, X., Seidler, I., Friedrich, K., Raulf, K., Pretz, T., Feil, A., Pomberger, R., & Vollprecht, D. (2019). INFLUENCES AND CONSEQUENCES OF MECHANICAL DELABELLING ON PET RECYCLING. Detritus, Volume 06-June 2019 (06), 39-46.
DOI 10.31025/2611-4135/2019.13816
Lorenzo-Navarro, J.; Serranti, S.; Bonifazi, G.; Capobianco, G. Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images. In Advances in Computational Intelligence IWANN 2021. Lecture Notes in Computer Science; Rojas, I., Joya, G., Catala, A., Eds.; Springer: Cham, Switzerland, 2021; 12862
Martens, H., Næs T., 2011. Pretreatment and linearization, Multivariate Calibration. John Wiley & Sons Ltd
Mehmood, T., Liland, K. H., Snipen, L., & Sæbø, S. 2012. A review of variable selection methods in partial least squares regression. Chemometrics and intelligent laboratory systems, 118, 62-69
Nergaard, L., Saudland, A., Wagner, J., Nielsen, J.P., Munck, L., and Engelsen, S.B., 2000. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Applied Spectroscopy, 54 (3), 413-419
Ragaert, K., Delva, L., Geem, K., V., 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58.
DOI 10.1016/j.wasman.2017.07.044
Rinnan, Å., van den Berg, F.M. and Engelsen, S.B., 2009. Review of the most common pre-processing techniques for near-infrared spectra, TrAC Trends Anal. Chem, 28,1201-1222
Serranti, S., Gargiulo, A., & Bonifazi, G., 2011. Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Management, 31(11), 2217-2227
Serranti, S., Gargiulo, A., & Bonifazi, G., 2012. Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system. Resources, Conservation and Recycling, 61, 52-58
Serranti, S., Cesare, D., Marini, F., & Bonifazi, G., 2013. Classification of oat and groat kernels using NIR hyperspectral imaging. Talanta, 103, 276-284
Serranti, S., Luciani, V., Bonifazi, G., Hu, B., & Rem, P. C., 2015a. An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste management, 35, 12-20
Serranti, S., Palmieri, R. and Bonifazi, G., 2015b. Hyperspectral imaging applied to demolition waste recycling: innovative approach for product quality control, J. Electron. Imaging, 24 (4), 043003.
DOI 10.1117/1.JEI.24.4.043003
Singh, N., Hui, D., Singh, R., Ahuja, I.P.S., Feo, L., Fraternali, F., 2017. Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng., 115, 409–422
Suhandy, D.; Yulia, M., 2019. Potential application of UV-visible spectroscopy and PLS-DA method to discriminate Indonesian CTC black tea according to grade levels. IOP Conf. Ser. Earth Environ. Sci., 258, 012042
Trotta, O., Bonifazi, G., Capobianco, G., and Serranti, S. 2021. Recycling-Oriented Characterization of Post-Earthquake Building Waste by Different Sensing Techniques. Journal of Imaging, 7(9), 182
Ulrici, A., Serranti, S., Ferrari, C., Cesare, D., Foca, G., Bonifazi, G., 2013. Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging. Chemometrics and Intelligent Laboratory Systems, 31-39
Vidal, M., Amigo, J.M., 2012. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemometrics and Intelligent Laboratory Systems, 117, 138-148.
DOI 10.1016/j.chemolab.2012.05.009
Welle, 2011. Twenty years of PET bottle to bottle recycling — An overview. Resources, Conservation and Recycling 55, 865– 875.
DOI 10.1016/j.resconrec.2011.04.009
Wu, G., Li, J., Xu, Z., 2013. Triboelectrostatic separation for granular plastic waste recycling: a review. Waste Manage., 33, 585-597
Yun, Y. H., Li, H. D., Deng, B. C., & Cao, D. S., 2019. An overview of variable selection methods in multivariate analysis of near-infrared spectra. TrAC Trends in Analytical Chemistry, 113, 102-115
Kyra Atessa Vogt, Leonie Wenzel and Iris Steinberg
Published 31 Mar 2022Oriana Trotta, Giuseppe Bonifazi, Giuseppe Capobianco and Silvia Serranti
Published 31 Mar 2022Pierre Hennebert
Published 31 Mar 2022Title | Support | Price |
---|