an official journal of: published by:
an official journal of: published by:
Editor in Chief: RAFFAELLO COSSU


  • Carly Adele Fletcher - Department of Natural Sciences, Manchester Metropolitan University, United Kingdom of Great Britain and Northern Ireland
  • Rachel Dunk - Department of Natural Sciences , Manchester Metropolitan University, United Kingdom of Great Britain and Northern Ireland

Released under CC BY-NC-ND

Copyright: © 2023 CISA Publisher


Over the last two decades, the stated intent of European waste management strategy has evolved from a specific focus on landfill diversion to enabling the transition to a circular economy.. Widespread introduction of source-segregation alongside deployment of material recovery technologies have improved MSW management practices across Europe. However, with diminishing returns it has become more difficult to achieve further landfill diversion through increased recycling alone, and incineration rates (across the EU-27 as a whole) have continued to increase. The advantages of incineration include the ability to harness the energy content of the waste alongside a sizeable reduction in mass and volume. However, the remaining solid residues, the most substantial being incinerator bottom ash, present a management issue. Exploring the role of incineration and the utilisation of incineration bottom ash, this paper highlights the potential risks of lock-in in the context of evolving waste policy. A simple thought experiment suggests that while increased use of incineration may help member states achieve 2035 landfill diversion targets, it would also carry a substantive risk of placing the 2035 recycling target out of reach. To address this, a long-term vision concerning the future of incineration is required, where it is recommended that policy which focuses on landfill diversion and the recycling of residual wastes should be strengthened through mechanisms that gradually phase out incineration and distinguish between open and closed-loop recycling.


Editorial History

  • Received: 08 Jan 2023
  • Revised: 14 Mar 2023
  • Accepted: 26 Apr 2023
  • Available online: 15 Jun 2023


Abbà, A., Collivignarelli, M. C., Sorlini, S., Bruggi, M. 2014. On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Composites Part B. 58, 502-509.
DOI 10.1016/j.compositesb.2013.11.008

Ahmed, A. T., Khalid, H. A. 2011. Effectiveness of novel and traditional treatments on the performance of incinerator bottom ash waste. Waste Manage. 31(12), 2431-2439.
DOI 10.1016/j.wasman.2011.07.015

Allegrini, E., Maresca, A., Olsson, M. E., Holtze, M. S., Boldrin, A., Astrup, T. F. 2014. Quantification of the resource recovery potential of municipal solid waste incineration bottom ashes. Waste Manage. 34(9), 1627-1636.
DOI 10.1016/j.wasman.2014.05.003

Allegrini, E., Vadenbo, C., Boldrin, A., Astrup, T. F. 2015. Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. J. Environ. Manage. 151, 132-143.
DOI 10.1016/j.jenvman.2014.11.032

Barbieri, L., Corradi, A., Lancellotti, I., Manfredini, T. 2002. Use of municipal incinerator bottom ash as sintering promoter in industrial ceramics. Waste Manage. 22(8), 859-863.
DOI 10.1016/S0956-053X(02)00077-6

Bartl, A. 2014. Ways and entanglements of the waste hierarchy. Waste Manage. 34(1) 1-2
DOI 10.1016/j.wasman.2013.10.016

Bartl, A. 2015. Withdrawal of the circular economy package: A wasted opportunity or a new challenge? Waste Manage. 44, 1-2.
DOI 10.1016/j.wasman.2015.08.003

Bartl, A. 2020. The Circular Economy Package of the European Union: Are new paths being taken or is it an old story? Detritus. 12, 12-17
DOI 10.31025/2611-4135/2020.13991

Bates, A.J., Sadler, J.P., Greswell, R.B., Mackay, R. 2015. Effects of recycled aggregate growth substrate on green roof vegetation development: A six-year experiment. Landscape Urban Plann. 135, 22-31.
DOI 10.1016/j.landurbplan.2014.11.010

Biganzoli, L., Ilyas, A., Praagh, M. v., Persson, K. M., Grosso, M. 2013. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction. Waste Manage. 33(5), 1174-1181.
DOI 10.1016/j.wasman.2013.01.037

Birgisdóttir, H., Pihl, K. A., Bhander, G., Hauschild, M. Z., Christensen, T. H. 2006. Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration. Transp. Res. Part D. 11(5), 358-368.
DOI 10.1016/j.trd.2006.07.001

Boesch, M. E., Vadenbo, C., Saner, D., Huter, C., Hellweg, S. 2014. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manage. 34(2), 378-389.
DOI 10.1016/j.wasman.2013.10.019

Bourtsalas, A., Vandeperre, L., Grimes, S., Themelis, N., Koralewska, R., Cheeseman, C. 2015. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust. Waste Manage. Res. 33(9), 794-804.
DOI 10.1177/0734242X15584846

Blasenbauer, D., Huber, F., Lederer, J., Quina, M. J., Blanc-Biscarat, D., Bogush, A., Bontempi, E., Blondeau, J., Chimenos, J. M., Dahlbo, H., Fagerqvist, J., Giro-Paloma, J., Hjelmar, O., Hyks, J., Keaney, J., Lupsea-Toader, M., O’Caollai, C. J., Orupõld, K., Pająk, T., Simon, F. -G., Svecova, L., Šyc, M., Ulvang, R., Vaajasaari, K., Van Caneghem, J., van Zomeren, A., Vasarevičius, S., Wégner, K., Fellner, J. 2020. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manage. 102, 868-883.
DOI 10.1016/j.wasman.2019.11.031

Chen, Y.-C., Lo, S.-L. 2015. Evaluation of greenhouse gas emissions for several municipal solid waste management strategies. J. Cleaner Prod. 113, 6.6-612.
DOI 10.1016/j.jclepro.2015.11.058

Chen, B., van Zijl, M. B., Keulen, A., Ye, G. 2020. Thermal Treatment on MSWI Bottom Ash for the Utilisation in Alkali Activated Materials. KnE Engineering, 5(4), 25–35.
DOI 10.18502/keg.v5i4.6792

Chiang, Y. W., Ghyselbrecht, K., Santos, R. M., Meesschaert, B., Martens, J. A. 2012. Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal. Today. 190(1), 23-30.
DOI 10.1016/j.cattod.2011.11.002

Chimenos, J. M., Fernández, A. I., Nadal, R., Espiell, F. 2000. Short-term natural weathering of MSWI bottom ash. J. Hazard. Mater. 79(3), 287-299.
DOI 10.1016/S0956-053X(03)00074-6

Clark, G. 2007. Evolution of the global sustainable consumption and production policy and the United Nations Environment Programme's (UNEP) supporting activities. J. Cleaner Prod. 15, 492-498.
DOI 10.1016/j.jclepro.2006.05.017

Confederation of European Waste-to-Energy Plants [CEWEP]. 2021. CEWEP Country Reports. Retrieved from

Cook, E., Wagland, S.T., Coulon, F. 2015. Investigation into the non-biological outputs of mechanical-biological treatment facilities. Waste Manage. 46, 212-226.
DOI 10.1016/j.wasman.2015.09.014

Corvellec, H., Zapata Campos, M. J., Zapata, P. 2013. Infrastructures, lock-in, and sustainable urban development: the case of waste incineration in the Göteborg Metropolitan Area. J. Cleaner Prod. 50, 32-39
DOI 10.1016/j.jclepro.2012.12.009

Costa, G., Polettini, A., Pomi, R., Spagnuolo, R. 2020. Enhanced Separation of Incinerator Bottom Ash: Composition and Environmental Behaviour of Separated Mineral and Weakly Magnetic Fractions. Waste Biomass Valor 11, 7079–7095.
DOI 10.1007/s12649-020-01106-1

Council of the European Union [CEU]. 2017a. Proposal for a Directive of the European Parliament and of the Council amending Directive 2008/98/EC on waste - Preparation for the trilogue

Council of the European Union [CEU]. 2017b. Proposal for a Directive of the European Parliament and of the Council amending Directive 1999/31/EC on the landfill of waste - Preparation for the trilogue

Delgado, L., Catarino, A. S., Eder, P., Litten, D., Luo, Z., Villanueva, A. 2009. End-of-Waste Criteria. Joint Research Centre, Institute for Prospective Technological Studies: European Commission
DOI 10.2791/28650

del Rio, P., Resch, G., Ortner, A., Liebmnn, L., Busch, S., Panzer, C. 2017. A techno-economic analysis of EU renewable electricity policy pathways in 2030. Energy Policy. 104, 484-493.
DOI 10.1016/j.enpol.2017.01.028

Dou, X., Ren, F., Nguyen, M. Q., Ahamed, A., Y, K., Chan, W. P., Chang, V. W. -C. 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable Sustainable Energy Rev. 79, 24-38.
DOI 10.1016/j.rser.2017.05.044

Ducom, G., Radu-Tirnoveanu, D., Pascual, C., Benadda, B., Germain, P. 2009. Biogas – Municipal solid waste incinerator bottom ash interactions: Sulphur compounds removal. J. Hazard. Mater. 166(2), 1102-1108

European Commission [EC]. 1999. Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. Retrieved September 1, 2022, from

European Commission [EC]. 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Retrieved September 1, 2022, from

European Commission [EC]. 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Retrieved September 1, 2022, from

European Comission [EC]. 2009. Regulation (EC) No 443/2009 of the European Parliament and of the Council of 23 April 2009 setting emission performance standards for new passenger cars as part of the Community's integrated approach to reduce CO 2 emissions from light-duty vehicles. Retreived November 18, 2022 from

European Commission [EC]. 2015a. Closing the loop - An EU action plan for the Circular Economy. Retrieved September 1, 2022, from

European Commission [EC]. 2015b. Proposal for a directive of the European Parliament and of the Council amending Directive 1999/31/EC on the landfill of waste. Retrieved September 1, 2022, from

European Commission [EC]. 2016. First circular economy action plan. Retrieved September 1, 2022, from

European Commission [EC]. 2017. The role of waste-to-energy in the circular economy. Retrieved September 1, 2022, from

European Commission [EC]. 2018. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Retreived November 18, 2022 from

European Commission [EC]. 2020. A new Circular Economy Action Plan For a cleaner and more competitive Europe. Retrieved September 1, 2022, from

Europen Commission [EC]. 2022a. Environmental impact of waste management – revision of EU waste framework. Retrieved November 18, 2022, from

European Commission [EC]. 2022b. REPowerEU: A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition. Retrieved December 31, 2022 from

European Environmental Bureau [EEB]. 2017. EU environment ministers need to show more support for EU waste laws, says the EEB. Retrieved from

Eurostat 2021. Municpal waste statistics. Retreived from

Eurostat. 2023a. Municipal waste by waste management operations. [Data extracted 10.03.2023] Retrieved from

Eurostat. 2023b Number and capacity of recovery and disposal facilities by NUTS 2 regions. [Data extracyed 10.03.2023] Retrieved from https://ec.europa.eurostat/data/database

FEAD. 2022. The waste management sector is not at its full capacity of producing energy. Retrieved November 18, 2022 from

Funari, V., Bokhari, S.N.H., Vigliotti, L., Meisel, T., Braga, R. 2016. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J. Hazard. Mater. 301, 471-479.
DOI 10.1016/j.jhazmat.2015.09.015

Funari, V., Braga, R., Bokhari, S.N.H., Dinelli, E., Meisel, T. 2015. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials. Waste Manage. 45, 206-216.
DOI 10.1016/j.wasman.2014.11.005

Garcia-Lodeiro, I., Carcelen-Taboada, V., Fernández-Jiménez, A., Palomo, A. 2016. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater. 105, 218-226.
DOI 10.1016/j.conbuildmat.2015.12.079

Gharfalkar, M., Court, R., Campbell, C., Ali, Z., Hillier, G. 2015. Analysis of waste hierarchy in the European waste directive 2008/98/EC. Waste Manage. 39, 305-313.
DOI 10.1016/j.wasman.2015.02.007

Gielar, A., Helios-Rybicka, E. 2013. Environmental impact of a hospital waste incineration plant in Krakow (Poland). Waste Manage. Res. 31(7), 722-728.
DOI 10.1177/0734242X13485868

Grosso, M., Biganzoli, L., Rigamonti, L. 2011. A quantitative estimate of potential aluminium recovery from incineration bottom ashes. Resour. Conserv. Recycl. 55(12), 1178-1184.
DOI 10.1016/j.resconrec.2011.08.001

Huang, Y., Bird, R. N., Heidrich, O. 2007. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 52(1), 58-73.
DOI 10.1016/j.resconrec.2007.02.002

Ji, Z., Pei, Y. 2019. Geopolymers produced from drinking water treatment residue and bottom ash for the immobilization of heavy metals. Chemosphere, 225, 579-587.
DOI 10.1016/j.chemosphere.2019.03.056

Johansson, N., Corvellec, H. 2018. Waste policies gone soft: An analysis of European and Swedish waste prevention plans. Waste Manage. 77, 322-332
DOI 10.1016/j.wasman.2018.04.015

Johansson, N., Velis, C., Corvellec, H. 2020. Towards clean material cycles: Is there a policy conflict between circular economy and non-toxic environment? Waste Manage. Res, 38(7), 705-707.
DOI 10.1177/0734242X20934251

Jurič, B., Hanžič, L., Ilić, R., Samec, N. 2006. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manage. 26(12), 1436-1442.
DOI 10.1016/j.wasman.2005.10.016

Karagiannidis, A., Kontogianni, S., Logothetis, D. 2013. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: A case for the 2 greater metropolitan regions of Greece. Waste Manage. 33(2), 363-372.
DOI 10.1016/j.wasman.2012.10.023

Kirchherr, J., Reike, D., Hekkert, M. 2017. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 127, 221-232.
DOI 10.1016/j.resconrec.2017.09.005

Kleemann, R., Chenoweth, J., Clift, R., Morse, S., Pearce, P., Saroj, D. 2017. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC). Waste Manage. 60, 201-210
DOI 10.1016/j.wasman.2016.10.055

Kuo, W.-T., Liu, C.-C., Su, D.-S. 2013. Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cem. Concr. Compos. 37(1), 328-335.
DOI 10.1016/j.cemconcomp.2013.01.001

Lancellotti, I., Cannio, M., Bollino, F., Catauro, M., Barbieri, L., Leonelli, C. 2015. Geopolymers: An option for the valorization of incinerator bottom ash derived "end of waste". Ceram. Int. 41(2), 2116-2123.
DOI 10.1016/j.ceramint.2014.10.008

Lancellotti, I., Ponzoni, C., Barbieri, L., Leonelli, C. 2013. Alkali activation processes for incinerator residues management. Waste Manage. 33(8), 1740-1749.
DOI 10.1016/j.wasman.2013.04.013

Li, X., Liu, Z., Lv, Y., Cai, L., Jiang, D., Jiang, W., Jian, S. 2018. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Constr. Build. Mater.178, 175-182.
DOI 10.1016/j.conbuildmat.2018.05.147

Liu, Z.S., Li, W.K., Huang, C.Y. 2014. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash. Waste Manage. 34(5), 893-900.
DOI 10.1016/j.wasman.2014.02.016

Malinauskaite, J., Jouhara, H., Czajczyńska, D., Stanchev, P., Katsou, E., Rostkowski, P., Throne, R. J., Colón, J., Ponsá, S., Al-Mansour, F., Anguilano, L., Krzyżyńska, R., López, I. C., Vlasopoulos, A., Spencer, N. 2017. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy, 141, 2013-2044.
DOI 10.1016/

Margallo, M., Aldaco, R., Irabien, Á. 2014. Environmental management of bottom ash from municipal solid waste incineration based on a life cycle assessment approach. Clean Technol. Environ. Policy. 16(7), 1319-1328.
DOI 10.1007/s10098-014-0761-4

Margallo, M., Taddei, M. B. M., Hernandez-Pellon, A., Aldaco, A., Irabien, A. 2015. Environmental sustainability assessment of the management of municipal solid waste incineration residues: a review of the current situation. Clean Technol. Environ. Policy. 17(5), 1333-1353.
DOI 10.1007/s10098-015-0961-6

Matsumoto, H., Takaoka, M. 2022. The application of multiple advanced chloride removal methods to synthesized Friedel’s salt and municipal solid waste incineration bottom ash. Waste Manage. 141, 27-34.
DOI 10.1016/j.wasman.2022.01.029

Mihai, F. C., Apostol, L. 2012. Disparities in municipal waste management across EU-27. A Geographical Approach. Present Environment and Sustainable Development, 6(1), 169-180.

Moreno, M., De los Rios, C., Rowe, Z., Charnley, F. 2016. A Conceptual Framework for Circular Design. Sustainability, 8, 937-951.
DOI 10.3390/su8090937

Nixon, J. D., Wright, D. G., Dey, P. K., Ghosh, S. K., Davies, P. A. 2013. A comparative assessment of waste incinerators in the UK. Waste Manage. 33(11), 2234-2244.
DOI 10.1016/j.wasman.2013.08.001

Olsson, S., Kärrman, E., Gustafsson, J. P. 2006. Environmental systems analysis of the use of bottom ash from incineration of municipal waste for road construction. Resour. Conserv. Recycl. 48(1), 26-40.
DOI 10.1016/j.resconrec.2005.11.004

Recycling Magazine. 20.09.2022. Scandinavian tax relief on waste incineration will reduce landfill in Europe. Retreived from

Saffarzadeh, A., Arumugam, N., Shimaoka, T. 2016. Aluminum and aluminum alloys in municipal solid waste incineration (MSWI) bottom ash: A potential source for the production of hydrogen gas. Int. J. Hydrogen Energy, 41(2), 820-831.
DOI 10.1016/j.ijhydene.2015.11.059

Schabbach, L.M., Andreola, F., Barbieri, L., Lancellotti, I., Karamanova, E., Ranguelov, B., Karamanov, A. 2012. Post-treated incinerator bottom ash as alternative raw material for ceramic manufacturing. J. Eur. Ceram. Soc. 32(11), 2843-2852.
DOI 10.1016/j.jeurceramsoc.2012.01.020

Schneider, D. R., Ragossnig, A. M. 2015. Recycling and incineration, contradiction or coexistence? Waste Manage. Res. 33(8), 693-695.
DOI 10.1177/0734242X15593421

Song, Y.M., Li, B.L., Yang, E.H., Liu, Y.Q., Ding, T. 2015. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cem. Concr. Compos. 56, 51-58.
DOI 10.1016/j.cemconcomp.2014.11.006

Svingstedt, A., Corvellec, H. 2018. When lock-ins impede value co-creation in service. Int. J. Qual. Serv. Sci. 10(1), 2-15.
DOI 10.1108/IJQSS-10-2016-0072

Šyc, M., Simon, F.G., Hykš, J. Braga, R., Biganzoli, L., Costa, G., Funari, V., Grosso, M. 2020. Metal recovery from incineration bottom ash: State-of-the-art and recent developments. J. Hazard. Mater. 393, 122433.
DOI 10.1016/j.jhazmat.2020.122433

UN General Assembly. 2015. Transforming our world: the 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. Retrieved from:

Van der Sloot, H. A., Kosson, D. S., Hjelmar, O. 2001. Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manage. 21(8), 753-765.
DOI 10.1016/S0956-053X(01)00009-5

Van Gerven, T., Geyson, D., Stoffels, L., Jaspers, M., Wauters, G., Vandescasteele, C. 2005. Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Manage. 25, 75-87.
DOI 10.1016/j.wasman.2004.09.002

Van Zomeren, A., Velzeboer, I. 2017. End of Waste criteria for inert aggregates in Member States. ECN: Petten, The Netherlands, 43

Verbinnen, B., Billen, P., Van Canegham, J., Vandecasteele, C. 2017. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valor. 8, 1453-1466.
DOI 10.1007/s12649-016-9704-0

Villanueva, A., Munck-Kampmann, B., Fischer, C., Watson, D., Jacobsen, H., Bahn Kristensen, K., Vrgoc, M., Skovgaard, M., Carlsen, R. 2006. Potential economic and environmental effects in Denmark of potential changes to 'end-of-waste' definitions. Danish Environmental Protection Agency

Vountatsos, P., Atsonios, K., Itskos, G., Agraniotis, M., Grammelis, P., Kakaras, E. 2016. Classification of Refuse Derived Fuel (RDF) and Model Development of a Novel Thermal Utilization Concept through Air-Gasification. Waste Biomass Valor. 7, 1297-1308.
DOI 10.1007/s12649-016-9520-6

Waste and Resources Action Programme [WRAP]. 2006. The sustainable use of resources for the production of aggregates in England. The Waste and Resources Action Programme

Wysokińska, Z. 2016. The "New" Environmental Policy of the European Union: A Path to Development of a Circular Economy and Mitigation of the Negative Effects of Climate Change. Comparative Economic Research: Central and Eastern Europe, 19(2), 57
DOI 10.1515/cer-2016-0013

Yao, J., Li, W.-B., Tang, M., Fang, C.-R., Feng, H.-J., Shen, D.-S. 2010. Effect of weathering treatment on the fractionation and leaching behaviour of copper in municipal solid waste incinerator bottom ash. Chemosphere, 81(5), 571-576.
DOI 10.1016/j.chemosphere.2010.08.038

Zero Waste Europe [ZWE]. 2022. The EP approves the inclusion of municipal incinerators in ETS as of 2026. Retreived August 22, 2022 from